• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 20
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 57
  • 57
  • 24
  • 23
  • 22
  • 20
  • 17
  • 17
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation of Embodied Energy in Domestic Construction

Ting, Siu Keih, ting0009@hotmail.com January 2007 (has links)
Over the years many developed economies around the world have used the domestic building sector capital growth as an indicator and as a stimulant to economic growth. However, attention to environmental duty of this industry has come to light only recently. There is an apparent increase in government attention and community awareness regarding the sustainability aspect of this growing industry and a greater emphasis is now being given to its environmental duty. The present pattern of metropolitan development in major Australian cities is one of spreading low-density suburbs. According to the Australian Bureau of Statistics the current trend indicates that there is a 30% increase in average dwelling size and material consumption and also a decline in the number of people per dwelling. This means the energy consumption per capital, both embodied and operational energy is on the rise in the domestic sector. In relative terms the emphasis on the conservation of embodi ed energy component is far less than the operational energy component. This research dissertation discusses the importance and needs in addressing this existing gap. Housing is an essential amenity. However the impact, due to current trend of increasing embodied energy consumption per capital should be minimised. This may even require major cultural shift to traditional construction processes, practices and home owner perceptions. This thesis presents the outcomes of a study investigating ways to produce a
2

Design and development of a heat retaining integrated collection/storage solar water heater

Smyth, Mervyn A. January 1998 (has links)
No description available.
3

Straw Bale Construction: Assessing and Minimizing Embodied Energy

Offin, MARIA 29 January 2010 (has links)
As the effects of global warming and the exhaustion of natural resources become more and more evident, the importance of low-impact construction alternatives is becoming increasingly apparent. Conventional construction not only irreversibly drains natural resources; it is also responsible for the great amount of energy consumed in the production of building materials. Natural renewable materials that offer low-impact, low-embodied energy construction alternatives have promising potential for the construction industry. This thesis provides an insight into construction with natural materials, with particular emphasis on straw bale construction, by undertaking an embodied energy analysis. Firstly, the existing published sources were studied to obtain the embodied energy values of various construction materials relevant to conventional residential and straw bale construction. The embodied energy values for straw bales were found to have great variation from source to source. To obtain the value appropriate for the Canadian situation, the analysis completed in this thesis utilizes published material on straw and biomass. Secondly, a comparative analysis of embodied energy for various wall systems was completed. This analysis proves that straw bale construction is an effective low impact alternative to conventional residential construction styles. In particular, the embodied energy of the straw bale wall section is six times smaller than that of the most common conventional construction style - wood-frame with brick siding. Finally, the component of the straw bale wall that has the highest embodied energy – plaster – was examined to investigate further reduction of the embodied energy of the straw bale wall. As a result of this investigation it was found that the plaster mix containing increased amounts of cementitious materials (for example, equal parts of cement and lime) has smaller embodied energy value. The findings of this work can be utilized both in the conventional construction industry as a guide to making environmentally mindful decisions, as well as for natural building construction to further improve the performance of straw bale structures. / Thesis (Master, Environmental Studies) -- Queen's University, 2010-01-28 16:18:47.585
4

Role of Prefabricated Modular Housing Systems in Promoting Sustainable Housing Practices

Oxley, David Richard III, david.oxley@rmit.edu.au January 2006 (has links)
The use of modular construction systems for residential purposes currently represents a very small proportion of all housing construction. The focus of these systems is on niche markets typified as cheap alternatives, homeowner involvement in construction or adaptations to construction constraints (build time availability, site access, etc.). Governments, regulatory bodies and industrial members are progressively moving towards increased environmentally sustainable practice. This progression is evidenced by the development of design and construction rating tools and the introduction of statutes and regulations governing construction and design. This work investigates the improvement of residential construction practice in terms of environmental sustainability outcomes through the use of modular housing systems. Two key aspects of environmental sustainability identified are embodied energy and material waste reduction. A modular system has been investigated because methods and procedures that directly relate to these two areas are well addressed by such systems. In order to validate the potential of modular systems in this environmental regard, three main areas have been addressed. The first is the ability for modular systems to generate the type of floor plans currently offered by Australian high-volume builders. Second, the environmental improvement potential offered by modular systems is addressed. Lastly are the issues of structural performance and the means of the tailoring of prefabricated modular systems to residential construction standards. Through the treatment of these three areas, potential benefits of modular systems are identified, with future work necessary to implement such benefits highlighted. The need for such improvements is noted, and a framework for evaluating future developments in this area of research is presented.
5

The Circle of Building Life: A Rubbish Revival

Gedeo, Adele Marguerite 17 January 2023 (has links)
Too often buildings around the world are completely demolished or gutted only for another building to take its place less than thirty years later, despite the strength of its original design intent. This human fascination with replacing the old with the new has led to a disastrous climatic situation. According to the EPA, in 2018 more than 90 percent of total construction and demolition debris generation in the U.S. alone came from demolition, and around 145 million tons of it was sent to landfills. Building design and redesign decisions must become even more conscientious when it comes to planning for the future, not only in the materials that are chosen, but how they are connected. Designers must plan on how projects not only get built, but also how they will inevitably be taken apart. / Master of Architecture / Too often buildings around the world are completely demolished or gutted only for another building to take its place less than thirty years later, despite construction standards in place to ensure buildings may withstand a hundred years of use. This human fascination with replacing the old with the new has led to a disastrous climatic situation. According to the Environmental Protection Agency, in 2018 more than 90 percent of total construction and demolition debris generation in the U.S. alone came from demolition, and around 145 million tons of it was sent to landfills. There is only so much land left to bury more trash, and most of it is poisoning the planet's resources, especially thanks to the exorbitant amount of plastic that is continuously created and discarded. This thesis seeks to study an underutilized building within a city, and discover ways to redesign it in a conscientious way that will offer future occupants opportunities to remodel or upgrade the structure with as little waste as possible. This idea of deconstruction is utilized in not only the materials that are chosen, but how they are connected, as well as in how the existing components are discarded or repurposed.
6

Assessing initial embodied energy in UK non-domestic construction projects

Davies, Philip J. January 2015 (has links)
There is an increasing need to reduce energy consumption to tackle the adverse effects of climate change. The UK government has established numerous directives and policies to encourage carbon dioxide (CO2) emission and energy reduction within the non-domestic sector. However these measures are primarily focused towards reducing operational energy (i.e. energy used during building occupier activity), largely overlooking initial embodied energy. The trend towards reduced operational energy consumption due to energy efficient design is leading initial embodied energy to become a more significant part of project life cycle energy. Initial embodied energy relates to the energy use during the material, transportation and construction phases up to project practical completion, which is of keen interest to contractors due to their significant role in project procurement and delivery. Opportunities to address project life cycle energy are typically identified through a Life Cycle Assessment (LCA). However at present there is little validated data, no coherent method for data capture and limited incentive for project stakeholders to address initial embodied energy consumption. In response, this research project presents a contractor s practical approach towards assessing initial embodied energy consumption within UK non-domestic construction projects. An action research methodological approach enabled the assessment and potential reduction of initial embodied energy to be explored within a large principal contractor through five research cycles which included diagnosing and action planning, action taking, evaluating and specified learning. A comprehensive framework is designed to highlight the significance of initial embodied energy consumption relative to specific construction packages, activities and sub-contractors. This framework is then explored within three UK non-domestic construction projects (i.e. two industrial warehouses and one commercial office). Capturing information from live projects enables practical challenges and opportunities inherent when addressing initial embodied energy consumption to be identified. A series of contractor current practices are reviewed, and subsequently improved, to enhance their compliance with the framework requirements. The findings emphasise the importance of material phase impacts, especially construction packages which primarily contain steel and concrete-based materials (i.e. ground and upper floor, external slab and frame). The importance of project type, site area, building lifespan and waste consumption are also recognised to reduce initial embodied energy consumption. The framework provides a practical approach for initial embodied energy assessment which can readily be adopted to help highlight further opportunities to reduce energy consumption. The research project concludes by presenting a number of recommendations for consideration by the construction industry and associated stakeholders, along with requirements for future research.
7

An Integrated BIM Model to Evaluate the Embodied Energy, Carbon Emissions & Environmental Costs of Construction Materials Used in the Design of Buildings

Odeh, Ahmad 08 December 2020 (has links)
Currently, many researchers are looking at efficient ways to reduce energy and carbon emissions of construction materials used in buildings over their life due to its significant environmental impact. Along with operational energy, embodied energies and its associated carbon are substantial contributors in the overall sustainability assessment. The calculation of materials’ embodied energy and carbon emissions during the construction stage is a major assessment factor that needs to be considered to measure the environmental impact of materials used in the construction of buildings, which would provide designers with the ability to lower the environmental impact of buildings at the early design stage. Overall, it is rather complicated to compute embodied energy and carbon emissions due to the various factors involved. The tools and methodologies, listed in the literature, are rather imperfect as they tend to overgeneralize. The equipment used, fuel needed, and electricity required for each type of construction material varies from one location to another and thus embodied energy used, and carbon produced will differ for each construction project. Moreover, the method used in manufacturing, transporting and putting in place these materials will have significant influence on their environmental impact. This anomaly has made it difficult to calculate or even benchmark the usage of such factors. This thesis proposes an integrated model aimed at calculating embodied energies, embodied carbon and associated costs generated by construction materials based on such variability. This thesis presents a systematic approach that uses an efficient method of calculation to provide new insight for the selection of construction materials and equipment required to place them for buildings. Such assessment will aid in reducing the environmental impact of construction. The proposed model will be developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting, and placing. The proposed model will use multiple databases to calculate the energy used by manufacturing, transporting, and placing construction materials. By identifying the machinery required, an accurate calculation is achieved through geospatial data analysis. The proposed model can automatically calculate the distances between the material suppliers and construction sites to increase the accuracy of its outcome. Based on such variables, the proposed model provides designers with a list of equipment as to minimize the embodied energy and carbon produced by materials used in constructing buildings. Additionally, the proposed model has the ability to calculate the environmental cost impact of using specific building materials. Overall, this thesis aims to help researchers and the construction industry in reducing the environmental impact of construction activities through the selection of materials and the determination of machines required to achieve that goal.
8

Low Carbon Architecture: New Approach Toward Sustainability in Relation to Existing Buildings

Hedayati, Mahsa 15 September 2020 (has links)
The built environment puts the greatest pressure on the natural environment out of all human activities, so it has a fundamental obligation to be environmentally sustainable. Carbon dioxide (CO2) or carbon emissions is a significant greenhouse gas that is inevitably associated with energy use when energy is produced via the combustion of fuels. Total life cycle energy, embodied and operational energy over a building's lifetime, creates significant environmental impacts through the production of CO2. By keeping and reusing existing and historic buildings rather than discarding them and building new, the embodied energy, or the energy that is locked up, can help to mitigate future damage. These buildings already exist, which indicates that the energy consumed to build them has been applied and the carbon associated with their construction has been released. The greenest buildings are ones that are already built. They are inherently more sustainable than any new buildings even with green and zero net energy systems and can be retrofitted to become more energy efficient. To demonstrate this thesis specifically, a design project engages with an abandoned late nineteenth-century bank building in Philadelphia and transforms it into a high-performance building that is prepared for long-term use. For the immediate next use, the project creates a work environment and a new vertical expansion of residential units. The preservation field always confronts the challenge of bridging the gap between embodied energy and operational energy. In the abandoned bank, there are some aspects of this building that are near permanent and define its character, such as brick walls with masonry ornament, two bank vaults, Wissahickon Schist foundation wall, and ceiling trusses. This thesis explores new approaches to leverage the embodied energy of the permanent parts of the abandoned bank and transform it into a high-performance building. A lot of energy of the abandoned bank, the building's material, and thermal mass is still actively performing. The building's envelope, the thick masonry wall, provides a moderately good insulating effect that will temper the indoor air that also preserves its historical character both inside and outside. The embodied energy of the building's envelope is leveraged by pairing it with localized heating and cooling using a radiation and conduction system. Other approaches that increase energy performance in the existing building, include the use of phase-change material for cooling the process water, solar hot water, creating drinking water via a solar still in the skylight, and distilled water from radiant cooling surfaces. In the new construction, a thermal switch facade and double-skin facade for the residential units are proposed, along with providing flexible space with thick mobile interior wall units. / Master of Architecture / Global warming as a problem of the twenty-first-century increase concentrations of greenhouse gases in the atmosphere due to human actions like burning fossil fuels. The built environment puts the greatest pressure on the natural environment of all industrial parts, and it has a fundamental role to manage the environment sustainably. Total life cycle energy, embodied and operational energy over the lifetime of the buildings, creates significant environmental impacts through the production of CO2. Embodied energy is the whole amount of energy applied to extract the raw materials, manufacture, transport, install, and use the product across its life cycle. Assessments of the embodied energy of historic and existing buildings are helping to mitigate future damage to resources. These buildings already exist, which indicates that the energy consumed to build them has been applied and the carbon associated with their construction has been released. The greenest buildings are ones that are already built. They are inherently sustainable and can be retrofitted to become more energy efficient. Specifically, this design engages with an abandoned late nineteenth-century bank building in Philadelphia and transforms it into a high-performance building that is prepared for long-term use. For the immediate next use, the project creates a work environment and in a new vertical expansion, residential units. In the abandoned bank, there are some aspects of this building that are near-permanent and define its characters, such as brick walls with masonry ornament, two bank vaults, Wissahickon Schist wall, and ceiling trusses. This thesis explores the new approaches to leverage the embodied energy of the permanent parts of the abandoned bank and transform it into a high-performance building. This is achieved through various means such as providing localized heating and cooling by using a radiation and conduction system, the use of phase-change material for cooling the process water, solar hot water, creating drinking water via a solar still in the skylight and distilled water from radiant cooling surfaces. In the new construction, a thermal switch facade and double-skin facade for the residential units are proposed, along with providing flexible space with thick mobile interior wall units.
9

Reuse of Construction Materials

de Fatima Dias, Jane January 2018 (has links)
The building and construction sectors are one of the main contributors to the socio-economic development of a country. Globally, these sectors generate around 5% to 10% of national employment and around 5% to 15% of a country's gross domestic product during construction, use and demolition. On the other hand, the sectors consume around 40% of world primary energy, use 30% of raw materials, generate 25% of solid waste, consume 25% of water, and use 12% of land. Furthermore, the sectors account for up to 40% of greenhouse gas (GHG) emissions, mainly from energy use during the life cycle of buildings. This study aims to assess the potential environmental benefits of reusing concrete and ceramic roof tile within the Swedish context in terms of their CO2 emission. Methodology used was a comparative LCA was to quantify the emissions. In order to calculate LCA, OpenLCA 1.7.0 software was used and to evaluate the emissions, LCIA method selected was ReCiPe, midpoint, Hierarchist model, climate change category expressed in GWP 100 years (in kg CO2eq). The FU of the study was a square meter of roof covering for a period of 40 years with potential to extent up to 80 years. A square meter of concrete roof tile weight 40 kg while ceramic 30 kg. The environment impact evaluation considered three product system, single use (cradle to grave), single use covering (cradle to user) and single reuse (user to cradle) within 40 years lifespan. In order to compare LCA of the roof tiles, two scenarios were created, Scenario 1 concrete RT in single use and single reuse whilst Scenario 2 evaluates ceramic RT. The outcomes of both scenarios were communicated through a model single family house. Dalarna’s Villa is located in Dalarna region in Sweden and a storage facility Ta Till Våra was to validate the benefits of reused materials. Comparative LCA revealed that concrete RT in single use released almost 80% more CO2 emissions than ceramic RT and generated 25% more disposable material by weight. The CO2 released by the single use vs. single reuse concrete RT showed higher emissions in the production of the concrete RT than the single reuse, the same occur with ceramic RT. The reuse of the tiles on the same site had an insignificant impact on the environment in both materials. The comparison shows that reuse reduces associated emissions by about 80% in both cases, reusing concrete is more beneficial, as emissions are reduced by 9.95 kg/m2 as opposed to 2.32 kg/m2 at the ceramics. This study reveals the benefit of reusing concrete and ceramic roof tile. In addition, the advantage of building a storage facility to reuse the disposable building materials, reducing the roofing materials ending at the landfill after 40 years. Furthermore, it demonstrated the reduction of CO2 emissions associated with the embodied energy.
10

Fluxos de energia em sistemas de produção de forragens / Energy flows in forage production systems

Andréa, Maria Carolina da Silva 18 June 2013 (has links)
No cenário mundial atual, em que é observado o aumento da população, da demanda por alimentos e da utilização de energia, também é observada a busca por fontes de energia alternativas às fósseis, diminuindo a dependência e risco econômico e ambiental oriundo de seu uso exclusivo. A análise de fluxos de energia possibilita uma avaliação da sustentabilidade de sistemas de produção agrícola, que visa o uso eficiente de insumos em termos energéticos. Essas análises também permitem identificar culturas como fonte de bioenergia, além de poderem ser utilizadas como complemento às análises econômicas, na busca por sistemas de produção mais eficientes. Esse estudo teve como objetivo apresentar uma análise do uso de insumos e energia, bem como a sua eficiência, em sistemas de produção de plantas forrageiras, tradicionalmente utilizadas para alimentação animal, na região dos Campos Gerais, Paraná. Foram determinados o fluxo de materiais (FM), demanda (EE) e disponibilização de energia (ES), balanço energético (BE), lucratividade energética (EROI) e energia incorporada (EI) da biomassa foram aplicados nesses sistemas. O FM determinou o consumo de insumos por área, e serviu de base para o cálculo da EE dos sistemas. Com características das culturas, calculou-se a ES, e com base nesses parâmetros, calculou-se os indicadores BE, EROI e EI. Com base nos resultados, concluiu-se que as culturas que se apresentaram mais eficientes do ponto de vista energético foram as gramíneas perenes, cultivares de P. maximum e Tifton 85, e as gramíneas anuais, milho e sorgo, pois apresentaram os melhores valores de indicadores da eficiência energética (ES, BE, EROI e EI), o que justificaria uma posterior investigação detalhada no uso energético dessas culturas. As culturas da aveia, azevém, cevada e milheto apresentaram os valores menos favoráveis no enfoque energético, portanto não adequadas à finalidade energética em relação às demais culturas estudadas. A operação que apresentou maior demanda de energia foi a distribuição de fertilizantes, devido aos insumos aplicados (mais que 47% da demanda total de todas as operações realizadas nas culturas). Os insumos que apresentaram maiores demandas de energia (mais de 57% do total) nos sistemas foram os fertilizantes, seguidos do diesel. Destacou-se o uso do fertilizante nitrogenado que representou mais de 50% da demanda total de energia em todos os sistemas de produção. O EROI para as cultivares de P. maximum, Tifton 85, milho, sorgo, milheto, azevém, cevada e aveia, foram: 14,2; 13,7; 10,1; 8,9; 7,2; 5,0; 4,6 e 3,8, respectivamente. / In the current world scenario, in which is observed the increase in population, demand for food and energy use, it is also observed the search for alternative energy sources to fossil fuels, decreasing dependence and environmental and economic risk arising from your use. Energy flows analysis enables an assessment of the sustainability of agricultural production systems, aiming the efficient use of inputs in energy terms. These analysis can also identify crops as a bioenergy source, and can be used as a complement to economic analysis, in the search for more efficient production systems. This study aimed to present an analysis of the use of inputs and energy, as well as its efficiency, in forage production systems, traditionally used for food, in the region of Campos Gerais, Paraná. Material flow (MF), demand (ED) and energy availability (EA), energy balance (EB), energy profitability (EROI) and embodied energy (EE) of biomass were calculated for all the systems. MF determined the inputs use per area, and was basis for the ED determination. With crop characteristics, EA was obtained, and based on these parameters, the indicators EB, EROI and EE were determined. Based on the results, it was concluded that the crops that were more efficient in energy terms were the perennial grasses, P. maximum cultivars and Tifton 85, and the annual grasses, maize and sorghum, since they presented the best values in the used energy indicators (EA, EB, EE and EROI), which would justify a further detailed investigation concerning the energy use of these crops. Oats, rye, barley and millet showed less favorable values, therefore not suitable for energy purposes in relation to other studied crops. The mechanized operation with the highest energy demand was the fertilizer distribution due to applied inputs (more than 47% of the total energy demand of all operations performed in cultures). The inputs that presented higher energy demand (more than 57% of the total) were fertilizers, followed by diesel, in all production systems. The use of nitrogen fertilizer is emphasized, since it represented over 50% of total energy demand in all production systems. The EROI for the cultivars of P. maximum, Tifton 85, maize, sorghum, millet, rye, barley and oats, were 14.2, 13.7, 10.1, 8.9, 7.2, 5.0, 4.6 and 3.8 , respectively.

Page generated in 0.0736 seconds