• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 44
  • 32
  • 30
  • 26
  • 9
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 514
  • 514
  • 441
  • 191
  • 99
  • 74
  • 64
  • 46
  • 46
  • 42
  • 42
  • 42
  • 40
  • 40
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Modelling endocrine pancreas development in mouse embryonic stem cells by activation of Pdx1 gene

Bernardo, Andreia January 2008 (has links)
Embryonic stem (ES) cells represent a possible source of islet tissue for the treatment of diabetes.  Achieving this goal will require a detailed understanding of how the transcription factor cascade initiated by the homeodomain transcription factor Pdx1 culminates in pancreatic beta-cell development.  Here we describe a genetic approach that enables fine control of Pdx1 transcriptional activity during endoderm differentiation of mouse ES cell.  By activating an exogenous Pdx1VP16 protein in populations of cells enriched in definitive endoderm we show a distinct lineage-dependent requirement for this transcription factor’s activity.  mimicking the natural biphasic pattern of Pdx1 expression was necessary to induce an endocrine pancreas-like cell phenotype, in which 30% of the cells were beta-cell-like.  Cell markers consistent with the different beta-cell differentiation stages appeared in a sequential order following the natural pattern of pancreatic development.  Furthermore, the differential beta-like cells secreted C-peptide (insulin) in response to KC1 and IBMX, suggesting that following a natural path of development in vitro represents the best approach to generate functional pancreatic cells.  Together these results reveal for the first time a significant effect of the timed expression of Pdx1 on the non-beta cells in the developing endocrine pancreas.  Collectively, we show that this method of <i>in vitro</i> differentiation provides a template for inducing and studying ES cell differentiation into insulin-secreting cells.
92

Neural derivatives from human embryonic stem cells: a cellular and molecular model for studying the role of orthodenticle homeobox2 in medulloblastoma progression

Kaur, Ravinder 29 July 2015 (has links)
Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is divided into 4 subtypes based on different genomic alterations and gene expression profiles. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor, Orthodenticle homeobox2 (OTX2) is frequently upregulated in multiple MB variants; however, its role may be subtype-specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs), but not their normal counterparts (hENs), resemble Groups 3 and 4 MBs. These trans-hENs also have >10-fold expression of OTX2. Therefore, we hypothesize that OTX2 has cell context-dependent functions in MB and using both normal and trans-hENs, we can delineate its specific roles in MB progression. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and sonic hedgehog (SHH) MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. Overexpression of OTX2 was accompanied by a decrease in expression of pluripotent genes such as SOX2. This was supported by exogenous introduction of SOX2 in OTX2+ SHH MB and hENs that rescued the OTX2 induced cellular deficits including self-renewal and cell migration. In contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Group 3 and 4 MBs by modulating expression of genes related to neurodevelopment and axonal guidance. OTX2 may play a central role in regulating the balance between self-renewal and differentiation in these aggressive MB cells. Our studies underscore the value of hESC derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression. Using the neural derivatives of hESCs, we have demonstrated a novel role for OTX2 in self-renewal and migration of hENs and MB cells. Moreover, our results reveal a cell context-dependent link between OTX2 and pluripotent genes. The association between OTX2 and axonal guidance genes is important for its oncogenic role and may potentially be exploited for managing drug resistant stem cell and highly motile cellular populations in the most aggressive Group 3 and 4 MB subtypes. / February 2017
93

Analysis of artificial chromosomes and factors affecting stability in murine and human cultured and embryonic stem cells

Chan, David Yiu Leung January 2010 (has links)
Human Artificial Chromosomes (HAC) are fascinating extrachromosomal molecules that stay independently from the host genome and are capable of segregating as efficiently as endogenous chromosomes. It has been proven that HAC are potential tools for both basic chromosome behavioural research and agents for gene therapy purposes. My DPhil project is divided into two main themes. The first theme was to develop a novel artificial chromosome in mouse embryonic stem cells. The second theme was to understand the factors affecting chromosome stability which may also affect the efficiency of artificial chromosome formation. so that our protocol for better HAC preparation can be refined. There are six results chapters in my thesis. The first three chapters described how I developed human artificial chromosomes in mouse embryonic stem cells. Initially, vectors containing a long stretch of human alphoid DNA were delivered to mouse cells using the Herpes Simplex Virus-I (HSV-l) amplicon system but the efficiency was low. Next, mouse pericentromeric and centromeric DNAs were employed for mouse artificial chromosome (MAC) via HSV-l system. However, the efficiency remained the same. Finally, I used the Microcell-Mediated Chromosome Transfer (MMCT) system to transfer HAC from HTl 080 cells into mouse ES cells and successfully established HAC in ES which were highly stable. The results obtained in this first part of my thesis suggested that to increase HAC formation efficiency it would be necessary to improve the techniques of HSV-I delivery and MMCT. Moreover, it would also be important to better characterize factors affecting chromosome behaviour. The last three results chapters focus on factors affecting chromosomes stability and improving the HSV -1 delivery system and MMCT. I undertook an in vivo study of whole cell fusion experiments with the aid of live cell irnaging system, and found that histone H2B proteins underwent a dynamic assembly/disassembly processes. Live cell imaging of MMCT suggested that the microcell delivery is a very slow process and the results may lead to a refinement of the MMCT protocol. I found it is possible to generate a single HAC using two HSV-l amplicons containing two different constructs, potentially doubling the HSV-l HAC capacity from 150 kb to 300 kb. The last chapter illustrated how the expression of non- coding centromeric satellites impaired chromosome stability in both human cultured and human embryonic stem cells. The findings revealed that non-coding centromeric RNA plays an important role on chromosome stability that might be important for artificial chromosome development.
94

Role de la cascade p38MAPK-p53 dans la différenciation des cellules souches embryonnaires de souris

Hadjal, Yasmine 14 June 2013 (has links)
La réussite de la thérapie cellulaire à l'aide des cellules souches embryonnaires, nécessite une bonne compréhension des mécanismes moléculaires qui contrôlent leur différenciation. Une des voies de signalisation, impliquée dans le contrôle de la différenciation des cellules souches, est la voie p38MAPK. Dans le but de comprendre les mécanismes moléculaires impliqués dans le contrôle de la différenciation précoce des cellules ES, nous avons réalisé un criblage sur puces à ADN. Les résultats du criblage ont montré que certains gènes régulés différentiellement, comme le gène Bcl2, sont des cibles communes de p38MAPK et de p53. En plus de son rôle de répresseur de tumeur, p53 a été impliqué dans le développement embryonnaire et dans la biologie des cellules ES. Ainsi, il est connu que p53 agit comme un répresseur du gène de pluripotence, Nanog. Il est également connu que p53 interfère avec le processus de reprogrammation des cellules adultes ; et que son activité transcriptionnelle augmente avec l'entrée des cellules ES en différenciation. En revanche, son rôle dans la différenciation et dans la formation des différents lignages issus des cellules ES, reste inconnu. Nous avons trouvé que le traitement des cellules ES sauvages avec l'inhibiteur spécifique de p53, la pifithrine-α, durant le processus de différenciation, inhibe les lignages mésodermiques, et à l'inverse, stimule la neurogenèse. De plus, la transfection transitoire des cellules ES avec des siRNAs spécifiques, dirigés contre p53 ainsi que l'utilisation des cellules ES déficientes pour le gène p53, montrent que l'absence de p53, affecte les lignages cardiaques, du muscle lisse et du muscle squelettique. / Embryonic stem cells (ESCs) differentiate in vitro into all cell lineages. We previously found that p38MAPK controls two independent successive steps during the early mesodermal commitment of ESCs. The first one is Brachyury dependent, a master gene of mesoderm formation whereas the second one is not. In order to understand the molecular mechanism implicated in the second step, we treated ESCs with the p38 specific Inhibitor PD169316 and performed microarray experiments on mRNAs extracted from treated versus untreated cells. Our results show that many regulated genes are common targets of p38MAPK and p53 transcription factor. In addition to its role as a tumor suppressor and cell cycle checkpoint control, p53 has been involved in embryonic development, but its role in ESC differentiation is still unknown. We found that treatment of wild type ESCs with the p53 specific inhibitor pifithrin α during the differentiation process inhibits mesodermal lineages and, by contrast, stimulates neurogenesis. Likewise, ESCs Transfected with p53 siRNAs and p53 KO ESCs show an inhibition of cardiac, endothelial, smooth muscle and skeletal muscle lineage formation. Furthermore, p38MAPK inhibition by PD169316 for 24h induces a strong decrease of p53 protein level. Our results suggest that p53 mediates the p38MAPK control of the commitment of ESCs towards mesodermal lineages. The involvement of the various p53 isoforms in this process will be discussed.
95

Mining large collections of gene expression data to elucidate transcriptional regulation of biological processes

Curry, Edward William James January 2011 (has links)
A vast amount of gene expression data is available to biological researchers. As of October 2010, the GEO database has 45,777 chips of publicly available gene expression pro ling data from the Affymetrix (HGU133v2) GeneChip platform, representing 2.5 billion numerical measurements. Given this wealth of data, `meta-analysis' methods allowing inferences to be made from combinations of samples from different experiments are critically important. This thesis explores the application of localized pattern-mining approaches, as exemplified by biclustering, for large-scale gene expression analysis. Biclustering methods are particularly attractive for the analysis of large compendia of gene expression data as they allow the extraction of relationships that occur only across subsets of genes and samples. Standard correlation methods, however, assume a single correlation relationship between two genes occurs across all samples in the data. There are a number of existing biclustering methods, but as these did not prove suitable for large scale analysis, a novel method named `IslandCluster' was developed. This method provided a framework for investigating the results of different approaches to biclustering meta-analysis. The biclustering methods used in this work involve preprocessing of gene expression data into a unified scale in order to assess the significance of expression patterns. A novel discretisation approach is shown to identify distinct classes of genes' expression values more appropriately than approaches reported in the literature. A Gene Expression State Transformation (`GESTr') introduced as the first reported modelling of the biological state of expression on a unified scale and is shown to facilitate effective meta-analysis. Localised co-dependency analysis is introduced, a paradigm for identifying transcriptional relationships from gene expression data. Tools implementing this analysis were developed and used to analyse specificity of transcriptional relationships, to distinguish related subsets within a set of transcription factor (TF) targets and to tease apart combinatorial regulation of a set of targets by multiple TFs. The state of pluripotency, from which a mammalian cell has the potential to differentiate into any cell from any of the three adult germ layers, is maintained by forced expression of Nanog and may be induced from a non-pluripotent state by the expression of Oct4, Sox2, Klf4 and cMyc. Analysis of cMyc regulatory targets shed light on a recent proposition that cMyc induces an `embryonic stem cell like' transcriptional signature outside embryonic stem (ES) cells, revealing a cMyc-responsive subset of the signature and identifying ES cell expressed targets with evidence of broad cMyc-induction. Regulatory targets through which cMyc, Oct4, Sox2 and Nanog may maintain or induce pluripotency were identified, offering insight into transcriptional mechanisms involved in the control of pluripotency and demonstrating the utility of the novel analysis approaches presented in this work.
96

Nuclear architecture in differentiating embryonic stem cells

Kleinert, Fanni January 2015 (has links)
Gene expression is regulated at various levels, such as transcription, RNA transport and translation. Additionally, it has been shown that chromatin structure, location and dynamics also have an important role in gene expression control. While active gene regions are strongly associated with an open chromatin structure at the surface of the chromosome territory (CT) and a location in the nuclear interior, inactive gene regions seem to be related with a closed structure within the CT and a position at the nuclear periphery. However, it is still unclear how these features are regulated. Importantly, malfunction of gene regulation can impact on health and longevity. Therefore, the aim of this project was to investigate the correlation of gene expression and chromatin organisation both in single gene loci and the MHC gene cluster. The MHC locus has the highest gene density in mammalian cells and contains genes that can be reprogrammed by pro-inflammatory cytokines. The original goal of this project was to label the MHC locus by the Lac operator/repressor (LacO/LacI) approach in order to study chromatin dynamics in living cells using labelled CTs as reference for genome mobility. The thymidine analogue EdU, that can be used to label CTs, was analysed for its effects on cell cycle progression and survival, and revealed to have a strong negative impact on the cells' well-being. In the end, the LacO/LacI-recognition system for live-cell imaging did not succeed, thus FISH analyses were carried out to study chromatin dynamics in snap-shots. The location and structure of the hybridised gene regions were analysed in response to gene activation and inactivation during ESC differentiation to neuroepithelial progenitors (NPs). Single-gene focused experiments were performed using the cell line specific genes, Oct4 and Sox1, together with Gapdh as a housekeeping gene. Even though, the results showed less changes between the days of differentiation on the Gapdh locus, the gene expression profiles for the cell line specific genes did not match with the hypothesised chromatin organisation (see above). However, investigations on the gene-dense MHC locus showed structural chromatin changes that correlated with the activation of genes in this region. Interestingly, ESC treated with TNFalpha were unable to activate NF-kappaB signalling, probably due to the lack of a functional IKK complex. In summary, this project was focussing on the regulation of gene expression by the chromatin architecture and revealed complex chromatin dynamics that are likely to be affected by the sum of genes in a genome region, rather than a single gene.
97

Protein interactions underpinning pluripotency

Gagliardi, Alessia January 2014 (has links)
Embryonic stem (ES) cells are maintained in an undifferentiated state by a gene regulatory network centred on the triumvirate of transcription factors Nanog, Oct4 and Sox2. Genome-wide chromatin immunoprecipitation studies indicate that in many cases target genes contain closely localised binding sites for each of these proteins, as well as additional members of the extended pluripotency transcription factor network. However, the biochemical basis of the interactions between these proteins is largely unknown, as are the mechanisms by which these interactions control ES cell identity. By purifying Nanog from ES cells and identifying co-purified proteins, we determined a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members and RNA processing factors. Validation of interactions was obtained by co-immunoprecipitation of Nanog with putative partners. Sox2 was identified as a robust interacting partner of Nanog and the interaction was investigated further. We show that the interaction is independent of DNA binding and that a region of Nanog known as tryptophan repeat, in which tryptophan is present every 5th residue is necessary and sufficient for the binding of Sox2. Furthermore, mutation of tryptophan residues within the Nanog tryptophan repeat (WR) abolishes the interaction with Sox2. A region of Sox2 known as serine rich region, a triple-repeat motif (S X T/S Y) within a stretch of 21 residues is required for the interaction with Nanog. Mutation of tyrosines to alanine within the three motifs (S X T/S Y) abrogates the Nanog–Sox2 interaction. The disruption of the Nanog-Sox2 interaction results in the alteration of expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines of the motif with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal. Together these data shed light on the extent of the interactions of Nanog with protein partners as well as the biochemical nature of the interaction between Nanog and one of the most important partners Sox2, an interaction crucial for maintaining optimal mouse ES cell self-renewal efficiency.
98

Nanog-Tcf15 axis during exit from naïve pluripotency

Tatar, Tülin January 2018 (has links)
Pluripotent cells have the dual abilities to self-renewal and to differentiate into all three germ layers. Pluripotent cells can be isolated from two different stages of mouse embryogenesis. Embryonic stem cells (ESCs) are isolated from the inner cell mass (ICM) of the pre-implantation embryo and are considered to be in a naïve state. On the other hand, cells isolated from epiblast of the post-implantation embryo are referred as epiblast stem cells (EpiSC) and are representative of primed pluripotency. ESCs and EpiSCs are distinct from each other in terms of the morphology, the gene regulatory network and the signalling pathways regulating self-renewal. Under certain conditions, ESCs and EpiSCs can be transitioned into each other. However, the mechanism that regulates this transition from naïve to primed pluripotent state remains to be solved. Nanog, Oct4 and Sox2 form the core gene regulatory network of pluripotency. Additionally, the Id protein family is also important in the maintenance of pluripotency in ESCs. Id proteins function by inhibiting the activity of pro-differentiation factors. Tcf15 is identified as one of the targets of Id inhibition in ESCs. Moreover, Tcf15 has been identified as a repression target of Nanog. In this study, to understand the function of Tcf15, the expression of Tcf15 was characterized in differentiating ESCs. The transient upregulation of Tcf15 mRNA and protein was detected at early stages of differentiation before lineage commitment. Furthermore, Tcf15 protein was heterogeneously expressed in differentiating cells. Mutually exclusive expression of Nanog and Tcf15 proteins were demonstrated in both self-renewing and differentiating ESCs. Further characterization of the effect of Nanog on Tcf15 transcription showed that Tcf15 pre-mRNA was downregulated within 20 minute of Nanog induction. A Nanog binding site was identified at +32kb relative to the Tcf15 transcription start site (TSS). Initially, Nanog binding at this region was confirmed by performing ChIP-PCR experiments. Then, this Nanog binding region was further analysed for its enhancer activity related to the Tcf15 gene. Deletion of the Nanog binding region using CRISPR-Cas9 confirmed that this region acts as Tcf15 enhancer; it was shown that this region was required for the activation of Tcf15 transcription during differentiation. Tcf15 induction experiments were performed in order to the check whether Tcf15 affects Nanog transcription. The results indicate that Nanog is not a direct target of Tcf15, but Tcf15 contributes indirectly to the repression of Nanog. Additional analysis with the Tcf15 enhancer deletion cells showed that Tcf15 is not required for efficient downregulation of naïve markers and the upregulation of primed markers. However, the genes related to the regulation of adhesion properties of cells such as Zyc, Itga3 were induced with lower efficiency in the absence of Tcf15 compared to the wild type cells. In summary, I investigated the reciprocal regulation of Tcf15 and Nanog and the role of Tcf15 for the differentiation. My results suggest that Tcf15 is expressed in the cells that have initiated differentiation but are not lineage-committed. Additionally, Tcf15 can contribute to the regulation of adhesion related genes in order to help the epithelisation of the cells required during the differentiation from naïve to the primed pluripotent state. As a conclusion, Nanog is proposed to help to prevent certain aspects of ESCs differentiation by repressing Tcf15.
99

Role of mouse PinX1 in maintaining the characteristics of mouse embryonic stem cells.

January 2011 (has links)
Lau, Yuen Ting. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 156-163). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract in Chinese (摘要) --- p.iii / Acknowledgements --- p.iv / Table of content --- p.V / List of figures --- p.ix / List of tables --- p.xiii / List of abbreviations --- p.xiv / Chapter 1 --- INTRODUCTION --- p.Page / Chapter 1.1 --- Embryonic stem cells (ESCs) --- p.1 / Chapter 1.1.1 --- What are ESCs and the characteristics of ESCs --- p.1 / Chapter 1.1.2 --- Promising use of ESCs in drug development and regenerative medicine --- p.1 / Chapter 1.1.3 --- Maintenance of self-renewal and pluripotent properties of ESCs --- p.3 / Chapter 1.2 --- Cell cycle in ESCs --- p.5 / Chapter 1.2.1 --- Cell cycle --- p.5 / Chapter 1.2.2 --- Characteristics of cell cycle of ESCs --- p.6 / Chapter 1.3 --- Telomere --- p.8 / Chapter 1.3.1 --- Telomere structure and the telomeric proteins --- p.8 / Chapter 1.3.2 --- End replication problem --- p.10 / Chapter 1.3.3 --- Telomere dysfunction in cancer and cellular aging --- p.11 / Chapter 1.4 --- Telomerase --- p.12 / Chapter 1.4.1 --- Telomerase and stem cell characteristics --- p.13 / Chapter 1.4.1.1 --- Telomerase and cell proliferation --- p.13 / Chapter 1.4.1.2 --- Telomerase and stem cell differentiation --- p.14 / Chapter 1.4.2 --- Regulation of telomerase expression/ activity --- p.15 / Chapter 1.4.2.1 --- Regulation of telomerase at different levels --- p.15 / Chapter 1.4.2.2 --- Regulation of telomerase activity by cellular components in ESCs --- p.16 / Chapter 1.5 --- PinXl --- p.18 / Chapter 1.5.1 --- Expression of PinXl --- p.18 / Chapter 1.5.2 --- Effects of PinXl on the activities and the sub-cellular localization of telomerase --- p.19 / Chapter 1.5.3 --- Structure-function relationship of PinXl --- p.19 / Chapter 1.5.4 --- Effect of PinXl on the growth rate of normal and cancer cells --- p.21 / Chapter 1.5.5 --- Other functions of PinX 1 V --- p.22 / Chapter 1.5.6 --- Mouse homolog of PinXl and its function in mESCs --- p.23 / Chapter 1.6 --- Aims of this study --- p.24 / Chapter 2 --- METERIALS AND METHODS --- p.Page / Chapter 2.1 --- mESC culture and differentiation --- p.25 / Chapter 2.1.1 --- Cell line --- p.25 / Chapter 2.1.2 --- Irradiation of MEF --- p.25 / Chapter 2.1.3 --- mESC culture --- p.26 / Chapter 2.1.4 --- Differentiation of mESCs --- p.26 / Chapter 2.1.5 --- Establishment and' culture of feeder-free mESCs --- p.28 / Chapter 2.1.6 --- Culture of feeder-free mESCs --- p.28 / Chapter 2.2 --- Trypan Blue Exclusion Assay --- p.29 / Chapter 2.3 --- Sub-cloning --- p.29 / Chapter 2.3.1 --- Amplification of the insert gene by PCR --- p.29 / Chapter 2.3.2 --- Purification of PCR products --- p.31 / Chapter 2.3.3 --- Restriction enzyme digestion --- p.32 / Chapter 2.3.4 --- Ligation of digested insert and vector --- p.33 / Chapter 2.3.5 --- Transformation of ligation product into competent cells --- p.34 / Chapter 2.3.6 --- Confirmation of positive clone by colony PCR --- p.34 / Chapter 2.3.7 --- Small scale preparation of the recombinant plasmid DNA --- p.35 / Chapter 2.3.8 --- Confirmation of positive clone by restriction digestion --- p.36 / Chapter 2.3.9 --- DNA sequencing of the recombinant plasmid DNA --- p.36 / Chapter 2.3.10 --- Large scale preparation of the recombinant plasmid DNA --- p.37 / Chapter 2.4 --- Design of siRNA targeting mPinXl and mPinXlt --- p.38 / Chapter 2.5 --- Transient transfection --- p.38 / Chapter 2.6 --- Cloning of siRNA into shRNA insert in Lentiviral Vector pLVTHM --- p.39 / Chapter 2.7 --- Lentiviral vector-mediated gene transfer to mESCs --- p.42 / Chapter 2.7.1 --- Lentivirus packaging --- p.42 / Chapter 2.7.2 --- Checking of successful transduction by lentivirus in HEK cells --- p.43 / Chapter 2.7.3 --- Multiple transductions to mESCs --- p.43 / Chapter 2.7.4 --- Selection of positive clones --- p.44 / Chapter 2.7.5 --- Monoclonal establishment --- p.44 / Chapter 2.8 --- "Total RNA preparation, Reverse Transcription (RT) and Quantitative Polymerase Chain Reaction (qPCR)" --- p.45 / Chapter 2.9 --- Immunocytochemistry --- p.46 / Chapter 2.10 --- Western Blotting --- p.48 / Chapter 2.10.1 --- Total Protein Extraction vi --- p.48 / Chapter 2.10.2 --- Measurement of Protein Concentration --- p.48 / Chapter 2.10.3 --- SDS-PAGE and chemiluminescent detection --- p.49 / Chapter 2.11 --- Co-immunoprecipitation --- p.51 / Chapter 2.12 --- Telomere Repeat Amplification Protocol (TRAP) Assay --- p.52 / Chapter 2.13 --- Cell cycle analysis --- p.54 / Chapter 2.14 --- MTT assay --- p.54 / Chapter 2.15 --- Statistical analysis --- p.55 / Chapter 3 --- RESULTS --- p.Page / Chapter 3.1 --- mPinXlt was discovered in mESCs --- p.56 / Chapter 3.2 --- mPinXl and mPinXlt were expressed at transcriptional level in the inspected mouse tissues --- p.61 / Chapter 3.3 --- Expression of mPinXl and mPinXlt changed upon differentiation --- p.64 / Chapter 3.4 --- mPinXl and mPinXlt were both located in the nucleolus and the nucleoplasm in undifferentiated mESCs --- p.69 / Chapter 3.5 --- Co-immunoprecipitation (Co-IP) of mPinXl and mPinXlt with mTERT --- p.73 / Chapter 3.6 --- Transient knockdown of mPinXl in mESCs --- p.78 / Chapter 3.6.1 --- Knockdown of mPinXl decreased proliferation but did not change cell viability --- p.79 / Chapter 3.6.2 --- Knockdown of mPinXl decreased telomerase activity --- p.79 / Chapter 3.6.3 --- Knockdown of mPinXl did not change pluripotency --- p.80 / Chapter 3.6.4 --- Knockdown of mPinXl did not affect cell cycle progression --- p.80 / Chapter 3.7 --- Transient knockdown of mPinXlt using siRNA against mPinXlt in mESCs --- p.88 / Chapter 3.8 --- Transient over-expression of mPinXl and mPinXlt in mESCs --- p.90 / Chapter 3.8.1 --- Over-expression of mPinXl and mPinXlt decreased cell proliferation but didn't affect cell viability --- p.91 / Chapter 3.8.2 --- Over-expression of mPinXl increased telomerase activity --- p.92 / Chapter 3.8.3 --- Over-expression of mPinXl and mPinXlt did not affect pluripotency --- p.93 / Chapter 3.8.4 --- Over-expression of mPinXl and mPinXlt did not affect cell cycle progression --- p.93 / Chapter 3.9 --- Stable over-expression and knockdown of mPinXl and mPinXlt in mESCs --- p.103 / Chapter 3.9.1 --- Expression of mPinXl and mPinXlt at mRNA and protein levels in all over-expression stable cell lines --- p.108 / Chapter 3.9.2 --- Expression of mPinXl and mPinXlt at mRNA and protein levels in mPinXl knockdown stable cell lines --- p.113 / Chapter 3.9.3 --- Proliferation of all stable cell lines --- p.116 / Chapter 3.9.4 --- Telomerase activity of all stable cell lines --- p.121 / Chapter 3.9.5 --- Cell cycle distribution of all stable cell lines --- p.123 / Chapter 3.9.6 --- Pluripotency of all stable cell lines --- p.127 / Chapter 3.9.7 --- Differentiation of the stable cell lines --- p.130 / Chapter 3.9.7.1 --- Size of EBs formed from stable cell lines at Day 7 --- p.130 / Chapter 3.9.7.2 --- Beating curves of the stable cell lines derived EBs --- p.130 / Chapter 4 --- DISCUSSIONS --- p.Page / Chapter 4.1 --- mPinXlt gene was detected in mESCs --- p.137 / Chapter 4.2 --- "Presence of mPinXl and mPinXlt in mouse tissues, mESCs and their differentiation derivatives" --- p.138 / Chapter 4.3 --- Differences in expressions of mPinXl and mPinXlt in undifferentiated mESCs and their differentiation derivatives --- p.139 / Chapter 4.4 --- mPinXl and mPinXlt are pre-dominantly localized in the nucleolus --- p.141 / Chapter 4.5 --- mPinXl and mPinXlt interacted with mTERT --- p.143 / Chapter 4.6 --- "Transient knockdown of mPinXl slightly inhibited, while over-expression of mPinXl slightly promoted telomerase activity" --- p.143 / Chapter 4.7 --- Both transient knockdown and over-expression of mPinXl inhibited the growth of mESCs --- p.146 / Chapter 4.8 --- Both stable knockdown and over-expression of mPinXl did not affect cell proliferation and telomerase activity of mESCs --- p.148 / Chapter 4.9 --- Involvement of mPinXl and mPinXlt in the differentiation process of mESCs --- p.149 / Chapter 4.10 --- Regulation of mPinXl gene expression by mPinXlt --- p.151 / Chapter 4.11 --- Future perspectives --- p.152 / Chapter 5 --- CONCLUSION --- p.154 / Chapter 6 --- REFERENCES --- p.156
100

Optimizing the production of erythroid cells from human embryonic stem cells

Ma, Rui January 2015 (has links)
Red blood cell (RBC) transfusion is the major treatment for patients suffering from trauma or severe anaemias, and life-long transfusion may be needed to alleviate symptoms and maintain body functioning. However, with a relatively low portion of people are donating, shortage in blood supply is becoming a life-threatening issue in the aging society. Among attempts to identify novel sources for transfusion medicine, human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) are currently the most promising candidate, which is capable of producing donor-independent, pathogen-free and immunologically compatible RBCs. Currently, hESC-derived erythropoiesis in vitro is considered to mimic the very primitive yolk sac haematopoiesis, indicated by a low or absent level of β globin production and incomplete enucleation. Thus these cells are not mature enough to be used in transfusion medicine. The aim of this PhD project was to overexpress a key erythroid transcription factor, Erythroid Krüppel-like factor (EKLF or KLF1) in an inducible manner to improve the maturation of hESC-derived erythroid cells. EKLF is a member of the Krüppel-like factor family, which is characterized by three C2H2 type zinc finger motifs. EKLF expression in vivo is highly restricted to erythroid cells in yolk sac, fetal liver, spleen and the bone marrow, although recently a low-level of expression was found in haematopoietic precursors. Published reports demonstrate that EKLF can 1) activate β globin expression by binding to the CACCC box in its promoter or by altering β-like globin locus chromatin structure; 2) exert a role in MEP (common progenitor for erythrocytes and megakaryocytes) stage by favouring erythroid differentiation against megakaryocyte differentiation; 3) promote enucleation by affecting the DNase II-alpha expression in the central macrophage of a fetal liver erythroblastic island; 4) act as an instructive factor for lineage commitment towards erythroid fate in HSCs. In this project, 1) We tested and evaluated a feeder-free, serum-free differentiation system for deriving erythroid cells from hESCs; 2) We constructed constitutive and inducible EKLF expression vectors and validated them in K562 cells; 3) We generated hESC lines carrying these EKLF expression vectors and assessed their effects on erythrocyte production and maturation. We found that our differentiation system was capable of generating haematopoietic progenitors (HPCs) and erythroid cells at high efficiency. Using this differentiation system, we concluded that enhanced expression of EKLF upregulated adult β globin expression selectively, without altering expressions of other globins. This finding provides hints for the development of novel approaches to “reprogramme” hESCs towards a certain fate and overexpression of EKLF in this differentiation system may be beneficial for resolving issues in future transfusion medicine.

Page generated in 0.0424 seconds