• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 44
  • 32
  • 30
  • 26
  • 9
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 514
  • 514
  • 441
  • 191
  • 99
  • 74
  • 64
  • 46
  • 46
  • 42
  • 42
  • 42
  • 40
  • 40
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The generation and characterization of CYP26A1(-/-) murine embryonic stem cells /

Langton, Simne. January 2007 (has links)
Thesis (Ph. D.)--Cornell University, May, 2007. / Vita. Includes bibliographical references.
82

FUNCTIONAL GENOMICS STUDY TO UNDERSTAND THE ROLE OF SEROTONIN IN MOUSE EMBRYONIC STEM CELLS

Nagari, Anusha 19 October 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter that is synthesized from the amino acid L-tryptophan and is reported to localize in mitochondria of embryonic stem cells. Even before its role as a neurotransmitter in mature brain was discovered, 5-HT has been shown to play an important role in regulating brain development. However, there is a lack of knowledge about the downstream target genes regulated by serotonin in embryonic stem (ES) cells. Towards this end, our study helps in understanding transcriptional regulatory mechanisms of 5-HT responsive genes in ES cells. By combining the gene expression data with motif prediction algorithms, literature validation and comparison with public domain data, gene targets specific to endogenous or exogenous 5-HT in ES cells were identified. By performing one-way ANOVA, and volcano plots using GeneSpring software, we identified 44 5-HT induced and 29 5-HT suppressed genes, likely to be transcriptionally regulated by 4 & 2 TFs respectively. Motif enrichment analysis on these target genes using MotifScanner revealed that the transcription factor TFAP2A plays a key role in regulating the expression of 5-HT responsive genes. Furthermore, by comparing our dataset with published expression profiles of ES cells, we observed a number of 5-HT responsive target genes showing enrichment in ES cells. Genes such as Nanog, Slc38a5, Hoxb1 and Eif2s1 from this analysis have been observed to be components of ‘stemness’ phenotypes reported in literature. Functional annotation of the 5-HT responsive genes identified gene ontologies such as regulation of translation in response to stress and energy derivation by oxidation, suggesting a regulatory role for 5-HT in mitochondrial functions of ES cells. Additionally, enrichment of other biological process terms such as development of various parts of nervous system, cell adhesion, and apoptosis suggests that 5-HT target genes may play an important role in ES cell differentiation. Our study implemented a new combinatorial approach for identifying gene regulatory mechanisms involved in 5-HT responsive genes and proposed potential mediatory role for serotonin in ES cell differentiation and growth. Thus, this study provides potential 5-HT target genes in ES cells for biological validation.
83

The moral status of embryonic stem cell research in the South African context

Nortje, Nico 12 1900 (has links)
Thesis (DPhil (Philosophy))--University of Stellenbosch, 2007. / Should surplus embryos which are destined to be discarded be protected at all cost, to the extent that they cannot contribute to medical knowledge - knowledge which could benefit society at large? Are embryos people or merely items of property? Different moral theories address these questions in different ways. Deontologists argue that the end never justifies the means and that the right not to be killed is more fundamental than the obligation to save. Utilitarians, on the other hand, argue that certain criteria should be met before moral significance can be contributed to an entity. The question of the moral status of the embryo is, as my discussion will show, one of the most widely discussed issues in the history of bioethics. Extensive literature exists on the topic. This study holds that an Ethics of Responsibility (ER) should by applied when answering the questions posed above as it encourages one to accept responsibility for the choices or decisions made and to defend them accordingly. I have endeavoured to answer the question of the personhood and rights of the embryo within the framework of the Ethics of Responsibility. Although these concepts overlap in many ways they remain central to the debate surrounding the sanctioning or prevention of the use of human embryonic stem cells in research. After identifying the micro-issues surrounding the human embryonic stem cell debate and explaining why both the deontologist and utilitarians fail to provide any adequate answers in this respect, I turn my attention to macro-issues such as safety concerns surrounding the usages and storage of stem cells. Commercialization, power issues, accessibility and the allocation of limited resources are also examined. Living in a society such as South Africa one cannot be blind to the inequalities of our health system. On a macro level I cannot but conclude that stem cell research does not seem to be a viable exercise within the South African context. South Africa faces a health care crisis far greater than the benefits stem cell research currently has to offer. However, the need still exists for a policy to guide future lawmakers who might need to address stem cell research and to guide decisions and actions. This brings me to my final chapter, namely proposing a morally justified policy for South Africa. I propose a policy which respects and values the autonomy of the progenitors’ choices (provided they have not been coerced) and which focuses on the beneficence of the greater society. Furthermore, it is paramount that the goal of any stem cell research should be for therapeutic use ONLY. Before commencing with the extraction of the stem cells, scientists should be obligated first to present convincing evidence that they have tried alternative ways to reach the same result. Once this has been proven, a regulatory body could issue the scientist/team with a license to undertake the specific research with a specific therapy as goal in order to prevent abuse. If they are found guilty of any unethical conduct their licenses should be revoked and an investigation launched.
84

Incorporation of bio-inspired microparticles within embryonnic stem cell aggregates for directed differentiation

Sullivan, Denise D. 27 May 2016 (has links)
Embryonic stem cells (ESCs) are a unique cell population that can differentiate into all three embryonic germ layers (endoderm, mesoderm, and ectoderm), rendering them an invaluable cell source for studying the molecular mechanisms of embryogenesis. Signaling molecules that direct tissue patterning during embryonic development are secreted by ESC aggregates, known as embryoid bodies (EBs). As many of these signaling proteins interact with the extracellular matrix (ECM), manipulation of the ESC extracellular environment provides a means to direct differentiation. ECM components, such as glycosaminoglycans (GAGs), play crucial roles in cell signaling and regulation of morphogen gradients during early development through binding and concentration of secreted growth factors. Thus, engineered biomaterials fabricated from highly sulfated GAGs, such as heparin, provide matrices for manipulation and efficient capture of ESC morphogens via reversible electrostatic and affinity interactions. Ultimately, biomaterials designed to efficiently capture and retain morphogenic factors offer an attractive platform to enhance the differentiation of ESCs toward defined cell types. The overall objective of this work was to examine the ability of microparticles synthesized from both synthetic and naturally-derived materials to enhance the local presentation of morphogens to direct ESC differentiation. The overall hypothesis was that microparticles that mimic the ECM can modulate ESC differentiation through sequestration of endogenous morphogens present within the EB microenvironment.
85

Understanding the function of the Mll-een leukaemic fusion gene by embryonic stem cell approaches

江卓庭, Kong, Cheuk-ting. January 2003 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
86

The fate of undifferentiated murine embryonic stem cells in a mouse model with acute myocardial infarction

Wong, Chun-wai, 黃俊瑋 January 2005 (has links)
published_or_final_version / abstract / Medicine / Master / Master of Philosophy
87

Three dimensional culture and in vitro chondrogenic differentiation ofmouse embryonic stem cell in collagen microsphere

Yeung, Chiu-wai., 楊超慧. January 2009 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
88

A comparative study on the effects of feeder cells on culture of human embryonic stem cells

Hou, Yuen-chi, Denise, 侯元琪 January 2009 (has links)
published_or_final_version / Obstetrics and Gynaecology / Master / Master of Philosophy
89

Characterising the function of a novel embryonic stem cell-associated signal transducer, Gab1β

Ho, Daniela Gattegno January 2009 (has links)
Activation of Ras/mitogen-activated protein kinase (ERK MAPK) signalling controls the differentiation of mouse embryonic stem (ES) cells. An established modulator of the ERK MAPK pathway is the IRS-1 (Insulin Receptor Substrate 1) family adaptor protein Gab1 (Grb2-associated binder 1). Gab1 is ubiquitously expressed and is activated by a wide range of cell surface receptors, mediating growth factor, cell-cell and cell-substratum interactions. The N-terminal region of Gab1 contains a pleckstrin homology (PH) domain required for membrane binding and a nuclear localisation sequence (NLS) that facilitates nuclear translocation. Undifferentiated mouse ES cells preferentially express high levels of a novel form of Gab1 (Gab1β) lacking the N-terminal region. Based on its novel structure and abundance, Gab1β may act in a dominant negative manner by binding and mislocalising downstream effectors. Alternatively, it may have a deregulated function unrestrained by the PH or NLS domains. Data presented here shows that Gab1β is tyrosine phosphorylated in response to the self-renewal factor Leukemia Inhibitory Factor (LIF) and/or Foetal Bovine Serum (FBS) stimulation. This then leads to the formation of complexes with Shp2 and the p85 subunit of PI3K. Experiments comparing the responses of wild-type and Gab1β knock-out ES cells indicate that Gab1β enhances ERK and potentially AKT phosphorylation in response to LIF. In contrast, Gab1β has a negative effect on ERK and AKT phosphorylation in response to IGF-1 (Insulin Growth Factor 1). These results suggest that the contribution of Gab1β to signalling activity is receptor specific and may imply that the response of ES cells to ERK activation is context specific. By reintroducing fluorescently tagged Gab1 proteins into Gab1β knockout ES cells, I investigated the localisation of Gab1β in ES cells. Gab1β localised at the cell membrane as well as in a perinuclear body. I next investigated the potential role of Gab1β in the differentiation of ES cells into neural precursors. A monolayer differentiation protocol was used to differentiate Gab1β wild-type and knock-out cells into neural precursors. Furthermore, the effect of insulin on the emergence of neural precursors from Gab1β-targeted cells was also explored.
90

Differentiation of embryonic stem cells towards pancreatic β-like cells

Uroić, Daniela Sonja January 2011 (has links)
Embryonic stem (ES) cells were used as a model system to understand the signalling events in pancreas development. ES cells were differentiated through known precursor stages towards the tissue of interest in order to recapitulate development in vitro. Thus, protocols directing differentiation of mouse ES cells towards definitive endoderm and pancreatic β-cells were developed. A combination of activin A and bone morphogenic protein 4 resulted in a population of enriched cells expressing genetic markers of definitive endoderm. In vitro differentiation of ES cells into functional pancreatic β-cells has only been partially successful, as it results in cells that are not fully differentiated or functional. This might be due to a lack of cues emanating from surrounding cells present in the developing pancreas. Conditioned media from the mouse MIN6 β-cell line were used on the basis that differentiated β- cells might send out signals affecting the differentiation of the surrounding islet cells. Mouse ES cells were enriched in definitive endoderm and then treated with MIN6 conditioned medium. Gene expression of the β-cell markers Insulin1, Insulin2, and Glucose transporter 2 was significantly increased relative to the untreated control group after 10 days of treatment with conditioned medium. This result was specific for conditioned medium from MIN6 cells as conditioned medium from a kidney-, a neuronal-, and an exocrine pancreatic cell line had no effect. In order to characterise the secreted factor(s) the conditioned medium was subjected to protein precipitation. The pancreatic differentiation factor was present in a protein fraction, suggesting that the factor(s) was proteinaceous. The protein in question was neither proinsulin nor insulin. This knowledge will support the efficient generation of insulin-secreting cells for diabetes therapy.

Page generated in 0.0559 seconds