Spelling suggestions: "subject:"emergent phenomena"" "subject:"émergent phenomena""
1 |
Frontiers in Theoretical High Energy Physics: From Physics Beyond the Standard Model to CosmologyAnber, Mohamed M. 01 September 2010 (has links)
This dissertation is focused on three lines of work. In the first part, we consider aspects of holography and gauge/gravity duality in lower and higher dimensions. In particular, we study the duality for exact solutions localized on the Randal-Sundrum 2-branes. We also test if some holographic principles in general relativity can be generalized to include higher derivative theories of gravity; namely Lovelock gravity. In the second part we consider the role of pseudo Nambu-Goldstone bosons (pNGBs) in inflationary cosmology. Specifically, we construct an inflationary model using string theory axions, and use these pNGBs to produce the observed coherent magnetic field in the Universe. The third part of the thesis is devoted to the study of the phenomenology of emergent phenomena. we investigated whether one could test if diffeomorphism invariance, the sacred symmetry of general relativity, is emergent. We also construct a new minimal vectorial Standard Model, and argue that the absence of mirror particles predicted by this model can give us a hint about the fundamental nature of space.
|
2 |
Multi-Scale Fluctuations in Non-Equilibrium Systems: Statistical Physics and Biological ApplicationMeigel, Felix Jonathan 29 August 2023 (has links)
Understanding how fluctuations continuously propagate across spatial scales is fundamental for our understanding of inanimate matter. This is exemplified by self-similar fluctuations in critical phenomena and the propagation of energy fluctuations described by the Kolmogorov-Law in turbulence. Our understanding is based on powerful theoretical frameworks that integrate fluctuations on intermediary scales, as in renormalisation group or coupled mode theory. In striking contrast to typical inanimate systems, living matter is typically organised into a hierarchy of processes on a discrete set of spatial scales: from biochemical processes embedded in dynamic subcellular compartments to cells giving rise to tissues. Therefore, the understanding of living matter requires novel theories that predict the interplay of fluctuations on multiple scales of biological organisation and the ensuing emergent degrees of freedom.
In this thesis, we derive a general theory of the multi-scale propagation of fluctuations in non-equilibrium systems and show that such processes underlie the regulation of cellular behaviour. Specifically, we draw on paradigmatic systems comprising stochastic many-particle systems undergoing dynamic compartmentalisation.
We first derive a theory for emergent degrees of freedom in open systems, where the total mass is not conserved. We show that the compartment dynamics give rise to the localisation of probability densities in phase space resembling quasi-particle behaviour. This emergent quasi-particle exhibits fundamentally different response kinetics and steady states compared to systems lacking compartment dynamics. In order to investigate a potential biological function of such quasi-particle dynamics, we then apply this theory to the regulation of cell death. We derive a model describing the subcellular processes that regulate cell death and show that the quasi-particle dynamics gives rise to a kinetic low-pass filter which suppresses the response of the cell to fast fluituations in cellular stress signals. We test our predictions experimentally by quantifying cell death in cell cultures subject to stress stimuli varying in strength and duration.
In closed systems, where the total mass is conserved, the effect of dynamic compartmentalisation depends on details of the kinetics on the scale of the stochastic many-particle dynamics. Using a second quantisation approach, we derive a commutator relation between the kinetic operators and the change in total entropy. Drawing on this, we show that the compartment dynamics alters the total entropy if the kinetics of the stochastic many-particle dynamics violate detailed balance. We apply this mechanism to the activation of cellular immune responses to RNA-virus infections. We show that dynamic compartmentalisation in closed systems gives rise to giant density fluctuations. This facilitates the emergence of gelation under conditions that violate theoretical gelation criteria in the absence of compartment dynamics. We show that such multi-scale gelation of protein complexes on the membranes of dynamic mitochondria governs the innate immune response.
Taken together, we provide a general theory describing the multi-scale propagation of fluctuations in biological systems. Our work pioneers the development of a statistical physics of such systems and highlights emergent degrees of freedom spanning different scales of biological organisation. By demonstrating that cells manipulate how fluctuations propagate across these scales, our work motivates a rethinking of how the behaviour of cells is regulated.
|
3 |
Modélisation téléonomique de la dynamique de croissance des plantes à partir du concept de densité foliairé / Spatial Leaf Density-based Modelling of Teleonomic Crown Dynamics for Crops and TreesBeyer, Robert 15 September 2016 (has links)
Les modèles structure-fonction de la croissance des plantes (FSPMs) combinent la description du fonctionnement biophysique et du développement architectural des plantes. On peut distinguer deux grandes familles de FSPM : d'une part les modèles décrivant finement la structure de la plante au niveau de l'organe et d'autre part les modèles à plus grande échelle qui s'intéressent directement à la forme du houppier. La paramétrisation du premier type de modèle est souvent difficile car elle nécessite des données expérimentales très riches. A l'inverse, les modèles à plus grande échelle mettent généralement en œuvre des lois empiriques qui ne permettent pas de décrire la plasticité de la croissance, et l'adaptation de la plante à des conditions environnementales différentes.Pour répondre à ces problématiques, nous nous tournons vers un nouveau paradigme : Motivé par le succès du concept de la densité spatiale dans les modèles en écologie des populations, cette thèse caractérise la distribution spatiale de feuillage dans les plantes par la densité de surface foliaire , ce qui permet une description locale ouvrant la voie à une prise en compte de la plasticité des plantes, tout en ne décrivant pas chaque feuille individuellement, ce qui permet de modéliser des vieux et grands arbres, dont le nombre de feuilles est sinon trop lourd à gérer du point de vue des calculs. Cette thèse présente des modèles dynamiques de croissance développés spécifiquement pour les plantes agricoles et les arbres. Nous explorons des approches mathématiques différentes en temps discrète et continue, tout en examinant d'un œil critique leurs aptitudes conceptuelles ainsi que des possibilités de simplifications et de solutions analytiques dans l'optique de l'accélération des simulations.La densité foliaire permet le calcul de l'interception de lumière par la loi de Beer-Lambert et la production de biomasse grâce au concept d'efficience d'utilisation de la lumière. Le mécanisme central qui est considéré pour les différentes approches développées dans cette thèse est celui de l'expansion locale de la surface foliaire dans la direction du gradient de lumière. Par ce concept téléonomique, nous faisons l'hypothèse que la plante cherche par son développement à optimiser la productivité de la surface foliaire pour la production de biomasse. Ce principe induit ainsi un développement horizontal et vertical du feuillage vers l'extérieur du houppier. Le développement horizontal cesse quand on s'approche trop de plantes voisines, leur ombrage diminuant le gradient de lumière et donc l'expansion de densité de surface foliaire dans ces directions. Le modèle de production de biomasse est également généralisé pour une prise en compte explicite de la teneur en eau du sol en introduisant une composante hydraulique permettant de décrire l'équilibre mécaniste entre le potentiel hydrique dans les feuilles et la transpiration par la régulation stomatale. Finalement, nous prenons en compte l'allocation de biomasse produite à d'autres compartiments de la plante tels que les racines et le bois selon la théorie du « pipe model ».Les résultats des modèles sont comparés à un large jeu de données expérimentales sur des plantations à différentes densités et conditions environnementales. Celui-ci montre de remarquables capacités d'une part à prévoir les variables biométriques importantes (hauteur, diamètre du tronc) ainsi que certaines relations d'allométrie, et d'autre part à générer des formes de houppier en accord avec les formes observées, ceci pour les différents scénarios de compétition et comme propriété émergente du modèle. Ainsi, cette thèse démontre le potentiel du concept de densité de surface foliaire en modélisation de la croissance des plantes, par sa capacité à reproduire les comportements locaux et l'adaptation à des conditions environnementales variées sans compromettre l'efficacité et la robustesse. / Functional-structural plant growth models (FSPMs) have emerged as the synthesis of mechanistic process-based models, and geometry-focussed architectural models. In terms of spatial scale, these models can essentially be divided into small-scale models featuring a topological architecture – often facing data-demanding parametrisations, parameter sensitivity, as well as computational heaviness, which imposes problematic limits to the age and size of individuals than can be simulated – and large-scale models based on a description of crown shape in terms of rigid structures such as empirical crown envelopes – commonly struggling to allow for spatial variability and plasticity in crown structure and shape in response to local biotic or abiotic growth conditions.In response to these limitations, and motivated not least by the success-story of spatial density approaches in theoretical populations ecology, the spatial distribution of foliage in plants in this thesis is characterised in terms of spatial leaf density, which allows for a completely local description that is a priori unrestricted in terms of plasticity, while being robust and computationally efficient. The thesis presents dynamic growth models specifically developed for crops and trees, exploring different mathematical frameworks in continuous and discrete time, while critically discussing their conceptual suitability and exploring analytical simplifications and solutions to accelerate simulations.The law of Beer-Lambert on the passing of light though an absorbing medium allows to infer the local light conditions based on which local biomass production can be computed via a radiation use efficiency. A key unifying mechanism of the different models is the local expansion of leaf density in the direction of the light gradient, which coincides with the direction most promising with regard to future biomass productivity. This aspect falls into the line of teleonomic and optimization-oriented plant growth models, and allows to set aside the otherwise complex modelling of branching processes. The principle induces an expansive horizontal and upward-directed motion of foliage. Moreover, it mechanistically accounts for a slow-down of the horizontal expansion as soon as a neighbouring competitor's crown is reached, since the appropriate region is already shaded, implying a corresponding adaptation of the light gradient. This automatically results in narrower crowns in scenarios of increased competition, ultimately decreasing biomass production and future growth due to lesser amount of intercepted light. In an extension, the impact of water availability is incorporated into the previously light-only dependency of biomass production by means of a novel hydraulic model describing the mechanistic balancing of leaf water potential and transpiration in the context of stomatal control. The allocation of produced biomass to other plant compartments such as roots and above-ground wood, e.g. by means of the pipe model theory, is readily coupled to leaf density dynamics.Simulation results are compared against a variety of empirical observations, ranging from long-term forest inventory data to laser-recorded spatial data, covering multiple abiotic environmental conditions and growth resources as well as stand densities and thus degrees of competition. The models generate a series of complex emergent properties including the realistic prediction of biometric growth parameters, the spontaneous adaptability and plasticity of crown morphologies in different competitive scenarios, the empirically documented insensitivity of height to stand density, the accurate deceleration of height growth, as well as popular allometric relationships – altogether demonstrating the potential of leaf density based approaches for efficient and robust plant growth modelling.
|
4 |
MULTI-ELECTRON BUBBLE PHASESDohyung Ro (9142649) 05 August 2020 (has links)
<div>Strong electronic correlations in many-body systems are cradles of new physics. They give birth to novel collective states hosting emergent quasiparticles as well as intriguing geometrical charge patterns. Two-dimensional electron gas in GaAs/AlGaAs under perpendicular magnetic field is one of the most well-known hosts in condensed matter physics where a plethora of the collective states appear. In the strong magnetic field regime, strong Coulomb interactions among the electrons create emergent quasiparticles, i.e. composite fermions and Cooper-paired composite fermions. In the weak magnetic field regime, modified Coulomb interactions drive electron solid phases having geometrical charge patterns in the shape of stripes and bubbles and lower the spatial symmetry of the states.</div><div><br></div><div>The fascinating charge order in bubble geometry is the electron bubble phase predicted first by the Hartree-Fock theory. In a bubble phase, certain number of electrons cluster as an entity called bubble and the bubbles order into a crystal of triangular lattice. In addition to the Hartree-Fock theory, the density matrix renormalization group and the exact diagonalization methods further support the formation of electronic bubbles.</div><div><br></div><div>Reentrant integer quantum Hall states are commonly accepted as the manifestations of the bubble phases in transport experiment. Soon after the first prediction of the Hartree-Fock theory, the reentrant integer quantum Hall states were observed in the third and higher Landau levels. Since then, the association to the bubble phases has been tested with different experimental techniques for decades.</div><div><br></div><div>Although the experimental results from different methods support the bubble phase picture of the reentrant integer quantum Hall states, the electron confinement under the quantum well structure hindered direct scanning of bubble morphology. Thus none of the experiments could showcase the bubble morphology of the reentrant integer quantum Hall states. Meanwhile, a significant discrepancy still remained in between the bubble theories and the experiments. Even though the bubble theories predict the proliferation of bubble phases with increasing orbital index, none of the experiments could observe multiple reentrant integer quantum Hall states in a high Landau level, which signify the multiple bubble formation. Therefore, the proliferation of bubble phases with increasing Landau level index was pessimistic. </div><div><br></div><div>In this Dissertation, I present my research on solving this discrepancy. In chapter 4, we performed a magnetotransport measurement of reentrant integer quantum Hall states in the third and higher Landau levels at various different temperatures. Then, we scrutinized how each of the reentrant integer quantum Hall states develops with the gradual increase of the temperature. As a result, we observed multiple reentrant integer quantum Hall states in the fourth Landau level which are associated with the two- and three-electron bubble phases. This result strongly supports the bubble phase picture of the reentrant integer quantum Hall states by confirming the possibility of the proliferation of bubble phases in high Landau levels.</div><div><br></div><div>In chapter 5, I analyzed the energetics of newly resolved two- and three-electron bubble phases in the fourth Landau level as well as those of two-electron bubble phases in the third Landau level. Here, I first found, in the fourth Landau level, the three-electron bubbles are more stable than the two-electron bubbles indicating that the multi-electron bubbles with higher electron number are more stable within a Landau level. Secondly, I found distinct energetic features of two- and three-electron bubble phases which are independent of Landau level index throughout the third and the fourth Landau levels. These results highlight the effect of the number of electrons per bubble on the energetics of multi-electron bubble phases and are expected to contribute on improving the existing Hartree-Fock theories.</div>
|
Page generated in 0.086 seconds