Spelling suggestions: "subject:"emplacement d’installations"" "subject:"implacement d’installations""
1 |
Efficient reformulations for deterministic and choice-based network design problemsLegault, Robin 08 1900 (has links)
La conception de réseaux est un riche sous-domaine de l'optimisation combinatoire ayant de nombreuses applications pratiques. Du point de vue méthodologique, la plupart des problèmes de cette classe sont notoirement difficiles en raison de leur nature combinatoire et de l'interdépendance des décisions qu'ils impliquent. Ce mémoire aborde deux problèmes de conception de réseaux dont les structures respectives posent des défis bien distincts. Tout d'abord, nous examinons un problème déterministe dans lequel un client doit acquérir au prix minimum un certain nombre d'unités d'un produit auprès d'un ensemble de fournisseurs proposant différents coûts fixes et unitaires, et dont les stocks sont limités. Ensuite, nous étudions un problème probabiliste dans lequel une entreprise entrant sur un marché existant cherche, en ouvrant un certain nombre d'installations parmi un ensemble de sites disponibles, à maximiser sa part espérée d'un marché composé de clients maximisant une fonction d'utilité aléatoire. Ces deux problèmes, soit le problème de transport à coût fixe à un puits et le problème d'emplacement d'installations compétitif basé sur les choix, sont étroitement liés au problème du sac à dos et au problème de couverture maximale, respectivement. Nous introduisons de nouvelles reformulations prenant avantage de ces connexions avec des problèmes classiques d'optimisation combinatoire. Dans les deux cas, nous exploitons ces reformulations pour démontrer de nouvelles propriétés théoriques et développer des méthodes de résolution efficaces. Notre nouvel algorithme pour le problème de transport à coûts fixes à un puits domine les meilleurs algorithmes de la littérature, réduisant le temps de résolution des instances de grande taille jusqu'à quatre ordres de grandeur. Une autre contribution notable de ce mémoire est la démonstration que la fonction objectif du problème d'emplacement d'installations compétitif basé sur les choix est sous-modulaire sous n'importe quel modèle de maximisation d’utilité aléatoire. Notre méthode de résolution basée sur la simulation exploite cette propriété et améliore l'état de l'art pour plusieurs groupes d'instances. / Network design is a rich subfield of combinatorial optimization with wide-ranging real-life applications. From a methodological standpoint, most problems in this class are notoriously difficult due to their combinatorial nature and the interdependence of the decisions they involve. This thesis addresses two network design problems whose respective structures pose very distinct challenges. First, we consider a deterministic problem in which a customer must acquire at the minimum price a number of units of a product from a set of vendors offering different fixed and unit costs and whose supply is limited. Second, we study a probabilistic problem in which a firm entering an existing market seeks, by opening a number of facilities from a set of available locations, to maximize its expected share in a market composed of random utility-maximizing customers. These two problems, namely the single-sink fixed-charge-transportation problem and the choice-based competitive facility location problem, are closely related to the knapsack problem and the maximum covering problem, respectively. We introduce novel model reformulations that leverage these connections to classical combinatorial optimization problems. In both cases, we exploit these reformulations to prove new theoretical properties and to develop efficient solution methods. Our novel algorithm for the single-sink fixed-charge-transportation problem dominates the state-of-the-art methods from the literature, reducing the solving time of large instances by up to four orders of magnitude. Another notable contribution of this thesis is the demonstration that the objective function of the choice-based competitive facility location problem is submodular under any random utility maximization model. Our simulation-based method exploits this property and achieves state-of-the-art results for several groups of instances.
|
Page generated in 0.1381 seconds