• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 24
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 162
  • 162
  • 99
  • 47
  • 28
  • 28
  • 20
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Efficiency of soil aquifer treatment in the removal of wastewater contaminants and endocrine disruptors. A study on the removal of triclocarban and estrogens and the effect of chemical oxygen demand and hydraulic loading rates on the reduction of organics and nutrients in the unsaturated and saturated zones of the aquifer.

Essandoh, Helen M.K. January 2011 (has links)
This study was carried out to evaluate the performance of Soil Aquifer Treatment (SAT) under different loading regimes, using wastewater of much higher strength than usually encountered in SAT systems, and also to investigate the removal of the endocrine disruptors triclocarban (TCC), estrone (E1), 17¿-estradiol (E2) and 17¿- ethinylestradiol (EE2). SAT was simulated in the laboratory using a series of soil columns under saturated and unsaturated conditions. Investigation of the removal of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Organic Carbon (DOC), nitrogen and phosphate in a 2 meter long saturated soil column under a combination of constant hydraulic loading rates (HLRs) and variable COD concentrations as well as variable HLR under constant COD showed that at fixed HLR, a decrease in the influent concentrations of DOC, BOD, total nitrogen and phosphate improved their removal efficiencies. It was found that COD mass loading applied as low COD wastewater infiltrated over short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. On the other hand relatively high concentrations coupled with long residence time gave better removal efficiency for organic nitrogen. Phosphate removal though poor under all experimental conditions, was better at low HLRs. In 1 meter saturated and unsaturated soil columns, E2 was the most easily removed estrogen, while EE2 was the least removed. Reducing the thickness of the unsaturated zone had a negative impact on removal efficiencies of the estrogens whereas increased DOC improved the removal in the saturated columns. Better removal efficiencies were also obtained at lower HLRs and in the presence of silt and clay. Sorption and biodegradation were found to be responsible for TCC removal in a 300 mm long saturated soil column, the latter mechanism however being unsustainable. TCC removal efficiency was dependent on the applied concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance, possibly due to its antibacterial property, as evidenced by a reduction in COD removals in the column. COD in the 2 meter column under saturated conditions was modelled successfully with the advection dispersion equation with coupled Monod kinetics. Empirical models were also developed for the removal of TCC and EE2 under saturated and unsaturated conditions respectively. The empirical models predicted the TCC and EE2 removal profiles well. There is however the need for validation of the models developed / Netherlands Organisation for International Cooperation in Higher Education (Nuffic) / The Appendix files for this thesis are unavailable online via Bradford Scholars.
142

<strong>EVALUATING EFFECTS OF PERFLUORINATED ALKYL SUBSTANCES (PFAS) ON ANURAN LIPID HOMEOSTASIS THROUGH </strong><em><strong>XENOPUS LAEVIS </strong></em><strong>BODY & HEPATIC CONDITION</strong>

Anna Grace Bushong (16612647) 18 July 2023 (has links)
<p> Per- and polyfluoroalkyl substances (PFAS) are a class of persistent environmental contaminants that have become ubiquitous, resulting in widespread exposure among humans and wildlife. Amphibians are regularly exposed in the field, making them susceptible to sublethal effects of PFAS exposure. In amphibians exposed to PFAS, deleterious effects have been observed, including reduction in body condition measured using the scaled mass index (SMI) and degraded hepatic condition, among others. PFAS may dysregulate lipid metabolism by altering signaling cascades regulated by peroxisome proliferator activated receptors (PPAR), but whether changes in energy stores can explain changes in amphibian SMI and/or hepatic condition remain underexplored. Since lipids are a critical energy reserve for anurans, understanding whether lipid metabolism is being perturbed is critical. The central objective of this thesis was to investigate the effect of PFAS on lipid homeostasis in <em>Xenopus laevis </em>tadpoles within the context of a PPAR mechanism of action (MOA), considering apical, molecular, and lipidomic endpoints. I conducted three studies: (a) a study to characterize SMI and the relative expression of the hepatic xPPARα/β/γ during metamorphosis, (b) a pharmaceutical exposure to assess the <em>in vivo</em> effects of xPPARα/β/γ agonism on hepatic gene expression for select downstream targets (<em>apoa5, fabp1, acox1,​ pck1</em>), and (c) a chronic PFAS exposure to investigate the effects of environmentally relevant concentrations (PFOS, PFHxS, PFOA, PFHxA at 0.5 ppb; binary mixture of PFOS:PFHxS at 1 ppb) on lipid homeostasis through apical endpoints (mass, snout vent length, SMI, hepatic condition), relative hepatic gene expression, and Multiple Reaction Monitoring (MRM) profiling of the hepatic lipidome for changes in relative class abundance. In study (a), I identified SMI and hepatic expression of <em>xPPARα/β/γ</em> is dynamic during late metamorphosis, indicating the potential for heightened susceptibility. However, in study (b), pharmaceutical agonists had no effect on <em>X. laevis</em> at high doses. For study (c), I did not observe effects on a majority of apical endpoints, including SMI, but detected a significant sex-specific reduction in hepatic condition for male<em> X. laevis</em> tadpoles exposed to single-chemical perfluorosulfonic acid (PFSA) treatments. For gene expression, I observed a transient downregulation for apolipoprotein-V (<em>apoa5</em>) at Nieuwkoop and Faber (NF) stage 62 for <em>X. laevis</em> tadpoles exposed to single-chemical perfluorocarboxylic acid (PFCA) treatments. Lipid profiling detected transient dysregulation of predominantly membrane lipids in-response to short-chain PFAS treatments at NF 58. Overall, our findings indicate PFAS may exert toxicity during anuran metamorphosis through multiple mechanisms of action (MOA) with sex-specific and developmental-stage specific outcomes.</p>
143

Prevalence of endocrine disrupting phthalate esters in selected foods and food wrappers from some some supermarkets around Pretoria, South Africa

Baloyi, Ntsako Dellas 06 1900 (has links)
Food is one of the main routes by which xenobiotic (synthetic) chemicals enter the body of man and wildlife. The routes could be from wrappers in which the foods are presented with possible transfer of the compounds to consumers, hence need for regular screening. The research work is aimed at investigating possible prevalence of phthalate esters in selected foods (cheese, polony and vienna) and their plastic wrappers from commercial stores in Tshwane metropolis. Food samples were purchased from selected stores, taken to the laboratory and stored at 4oC until analysed. Analysis was done by soxhlet extraction while determination and quantification of phthalates was carried out using Gas Chromatography-Flame Ionization Detection (GC-FID). Quality assurance of the process was by standard addition of the phthalate ester standards. Results obtained revealed good chromatographic separation of the analysed esters which ranged from 5.55 min for Dimethyl phthalate (DMP) to 8.96 min for Benzylbutyl phthalate (BBP). Instrumental detection limit of the esters varied from 0.03 - 0.05 μg/kg. The percentage recovery of the phthalate esters ranged from 75 – 90% from spiked cheese samples; 33 – 66% from spiked polony samples and 69 – 99% from spiked vienna samples. These recoveries are quite acceptable and applicable to the analysis and quantification of the compounds in the samples with the exception of Dibutyl phthalate (DBP) (33%); DMP (34%) and BBP (46 %) in polony samples. Results from chromatographic quantification revealed the absence of or non-detection of most of the analysed phthalate esters in the selected food samples. However, level of 0.031 μg/kg of BBP - 0.816 μg/kg of DMP were obtained in some of the analysed samples. / Environmental Sciences / M.Sc. (Environmental Science)
144

Prevalence of endocrine disrupting phthalate esters in selected foods and food wrappers from some supermarkets around Pretoria, South Africa

Baloyi, Ntsako Dellas 06 1900 (has links)
Food is one of the main routes by which xenobiotic (synthetic) chemicals enter the body of man and wildlife. The routes could be from wrappers in which the foods are presented with possible transfer of the compounds to consumers, hence need for regular screening. The research work is aimed at investigating possible prevalence of phthalate esters in selected foods (cheese, polony and vienna) and their plastic wrappers from commercial stores in Tshwane metropolis. Food samples were purchased from selected stores, taken to the laboratory and stored at 4oC until analysed. Analysis was done by soxhlet extraction while determination and quantification of phthalates was carried out using Gas Chromatography-Flame Ionization Detection (GC-FID). Quality assurance of the process was by standard addition of the phthalate ester standards. Results obtained revealed good chromatographic separation of the analysed esters which ranged from 5.55 min for Dimethyl phthalate (DMP) to 8.96 min for Benzylbutyl phthalate (BBP). Instrumental detection limit of the esters varied from 0.03 - 0.05 μg/kg. The percentage recovery of the phthalate esters ranged from 75 – 90% from spiked cheese samples; 33 – 66% from spiked polony samples and 69 – 99% from spiked vienna samples. These recoveries are quite acceptable and applicable to the analysis and quantification of the compounds in the samples with the exception of Dibutyl phthalate (DBP) (33%); DMP (34%) and BBP (46 %) in polony samples. Results from chromatographic quantification revealed the absence of or non-detection of most of the analysed phthalate esters in the selected food samples. However, level of 0.031 μg/kg of BBP - 0.816 μg/kg of DMP were obtained in some of the analysed samples. / Environmental Sciences / M. Sc. (Environmental Science)
145

Développement d’une approche toxicocinétique/toxicodynamique basée sur des mécanismes physiologiques pour évaluer les effets oestrogéniques du Bisphénol A / Development of a physiologically-based toxicokinetic/toxicodynamic approach to assess the estrogenic effects of Bisphenol A

Collet, Séverine 09 January 2012 (has links)
Ce travail a consisté à analyser, par des approches toxicocinétiques (TK) et mécanistiques, les effets oestrogéniques du Bisphenol A (BPA) sur un biomarqueur précoce et sensible : la sécrétion de l'hormone lutéinisante (LH) chez la brebis prépubère ovariectomisée. La plus faible concentration plasmatique en BPA induisant une inhibition de LH s'est avérée proche des concentrations maximales décrites chez l'Homme. Cette inhibition de LH pourrait impliquer une inhibition des systèmes neuronaux à kisspeptine. L'approche TK comparative d'espèces a montré que la clairance du BPA est toujours élevée, proche du débit sanguin hépatique. Pour une exposition à la dose journalière admissible, cette approche permet de prédire chez l'Homme des concentrations en BPA très inférieures à celles associées à une inhibition de LH dans notre modèle. / The goal of this thesis was to analyse through toxicokinetic (TK) and mechanistic approaches the estrogeno-mimetic effects of bisphenol A (BPA) on a precocious and sensitive biomarker: LH secretion in ovariectomized female lambs. The lowest plasma BPA concentrations associated to an inhibition of LH secretion appeared to be close to the highest one reported in human. LH suppression could be mediated by an inhibition of hypothalamic kisspeptin systems. The multispecies TK approach showed that BPA clearance is always high and equivalent to the liver blood flow. For an exposure scheme corresponding to the tolerable daily intake, this approach allows to predict human BPA concentration much lower than the one associated to LH inhibition in our highly sensitive lamb model.
146

Application of Fe(III)-EDDS complex in advanced oxidation processes : 4-ter-butylphenol degradation / Utilisation du complexe Fe(III)-EDDS dans des procédés d’oxydation avancée : dégradation du 4-tert-butylphénol

Wu, Yanlin 16 May 2014 (has links)
Dans cette étude, un nouveau complexe de fer est utilisé dans des processus d’oxydation avancée pour la dégradation de polluants organiques présents dans l’eau. Le fer ferrique (Fe(III)) et l’acide éthylène diamine-N,N’-disuccinique (EDDS) forment un complexe Fe(III)-EDDS dont la structure a été mise en évidence durant ce travail. Les propriétés photochimiques du complexe ont ensuite été évaluées en fonction de différents paramètres physico-chimiques dont le pH qui est apparu comme un paramètre clé pour l’efficacité des processus testés. Ensuite nous avons donc travaillé sur l’utilisation de ce complexe dans les processus de Fenton modifié, photo-Fenton et comme activateur des persulfates (S2O82-). Nos expériences ont été réalisées en présence du 4-tert-butylphénol (4-t-BP) qui est connu pour être un perturbateur endocrinien. Nous avons ensuite mis en évidence les conditions optimales du traitement pour la dégradation du 4-t-BP. Il est apparu que le pH joue un rôle très important et qu’en présence de ce complexe de fer, l’efficacité est plus importante pour des pH neutre ou légèrement basique. L’identification des radicaux oxydants responsables de la dégradation du polluant a également été réalisée. Dans ce cadre nous avons montré que le radical sulfate joue un rôle plus important que le radical hydroxyle lors du processus d’activation des persulfates. / Advanced Oxidation Processes (AOPs) have been proved to be successfully applied in the treatment of sewage. It can decolorize the wastewater, reduce the toxicity of pollutants, convert the pollutants to be a biodegradable by-product and achieve the completed mineralization of the organic pollutants. The Fenton technologies which are performed by iron-activated hydrogen peroxide (H2O2) to produce hydroxyl radical (HO•) has been widely investigated in the past few decades. Recently, Sulfate radical (SO4•-) which was produced by the activation of persulfate (S2O82-) is applied to the degradation of organic pollutants in water and soil. It is a new technology recently developed. It is also believed to be one of the most promising advanced oxidation technologies.In this study, a new iron complex is introduced to the traditional Fenton reaction. The ferric iron (Fe(III)) and Ethylene diamine-N,N′-disuccinic acid (EDDS) formed the complex named Fe(III)-EDDS. It can overcome the main disadvantage of traditional Fenton technology, which is the fact that traditional Fenton technology can only perform high efficiency in acidic condition. Simultaneously, EDDS is biodegradable and it is one of the best environment-friendly complexing agents. On the other hand, the transition metal is able to activate S2O82- to generate SO4•-. Therefore, Fe(III)-EDDS will also be applied to activate S2O82- in the present study. 4-tert-Butylphenol (4-t-BP) has been chosen as a target pollutant in this study. It is widely used as a chemical raw material and is classified as endocrine disrupting chemicals due to the estrogenic effects. The 4-t-BP degradation rate (R4-t-BP) is used to indicate the efficiency of the advanced oxidation processes which are based on Fe(III)-EDDS utilization. The main contents and conclusions of this research are shown as follows:In the first part, the chemical structure and properties of Fe(III)-EDDS and the 4-t-BP degradation efficiency in UV/Fe(III)-EDDS system were studied. The results showed that Fe(III)-EDDS was a stable complex which was formed by the Fe(III) and EDDS with the molar ratio 1:1. From the photoredox process of Fe(III)-EDDS, the formation of hydroxyl radical was confirmed including that HO• is the main species responsible for the degradation of 4-t-BP in aqueous solution. Ferrous ion (Fe(II)) was also formed during the reaction. With the increasing Fe(III)-EDDS concentration, 4-t-BP degradation rate increased but is inhibited when the Fe(III)-EDDS concentration was too high. Indeed, Fe(III)-EDDS is the scavenger of HO•. pH value had a significant effect on the degradation efficiency of 4-t-BP that was enhanced under neutral or alkaline conditions. On the one hand, Fe(III)-EDDS presented in the FeL-, Fe(OH)L2-, Fe(OH)2L3-, Fe(OH)4- four different forms under different pH conditions and they had different sensitivity to the UV light. On the other hand, pH value affected the cycle between Fe(III) and Fe(II ). The formation of hydroperoxy radicals (HO2•) and superoxide radical anions (O2•-) (pka = 4.88) as a function of pH was also one of the reasons. It was observed that O2 was an important parameter affecting the efficiency of this process. This effect of O2 is mainly due to its important role during the oxidation of the first radical formed on the pollutant. (...)
147

Effects of endocrine disruptors and traditional Chine medicine on the development of zebrafish / Effets des perturbateurs endocriniens et de la médecine traditionnelle chinoise sur le développement du poisson-zèbre

Li, Ling 09 July 2014 (has links)
Les problèmes de développement induits par les perturbateurs endocriniens (PE) sont actuellement peu étudiés, alors qu’une exposition précoce peut entraîner plus tard des problèmes permanents. Les lignées transgéniques de poisson zèbre (Danio rerio) avec une expression tissu-spécifique de la GFP sont des outils utiles pour identifier les organes affectés par un composé donné. Nous avons utilisé 7 lignées transgéniques pour visualiser in vivo si 6 PEs connus et 3 médicaments pouvaient avoir des effets sur le développement du poisson zèbre. Ce crible a révélé que 4 produits chimiques ont des effets sur 4 organes différents. Le tétrabromobisphénol-A, ainsi que le diclofénac, la trichostatine A et l'acide valproïque) perturbent le développement du système vasculaire. De plus, les inhibiteurs de HDAC trichostatine A et acide valproïque inhibent le développement du pancréas et induisent des retards de développement dans le foie et dans les dents pharyngiennes.La médecine chinoise traditionnelle (TCM) est un élément de la médecine moderne. Cependant, nous savons peu de choses sur les activités biologiques des composés TCM au cours du développement. Nous avons étudié les effets de 3 plantes et de 5 composés sur l'embryogenèse du poisson zèbre. Des extraits aqueux de Astragalus membranaceus et Akebia quinata provoquent des retards du développement. Nous avons aussi constaté que le développement vasculaire a été affecté à différents niveaux par Salvia miltiorrhiza et 3 de ses composants principaux, soit utilisés seuls ou mélangés entre eux.Nos résultats montrent que les PEs et les TCM peuvent causer des problèmes lors de l'embryogenèse. Ils montrent également que le poisson zèbre est un outil puissant pour le criblage rapide in vivo de petites molécules et de leurs effets sur le développement. Ce travail nous permet d'établir un parallèle entre EDC et TCMs, qui peuvent agir sur des cibles similaires, tels que les récepteurs nucléaires. / Development problems induced by endocrine disruptors (EDCs) are currently understudied. However, early exposure to EDCs may lead to deleterious and permanent problems in later lifetime. Zebrafish (Danio rerio) transgenic lines with tissue-specific expression of GFP are useful tools to identify the organs affected by a given compound. We have used 7 transgenic lines to visualize in vivo whether 6 known EDCs and 3 other pharmaceuticals can alter organogenesis during development of zebrafish. This screen revealed that 4 chemicals have effects on 4 different organs. The EDC tetrabromobisphenol-A, as well as the tested medicines (diclofenac, trichostatin A and valproic acid) disrupt vascular system development in zebrafish embryo. Moreover, HDAC inhibitors trichostatin A and valproic acid inhibit both endocrine and exocrine pancreas development. Developmental delays were also induced by trichostatin A and valproic acid in the liver and in the pharyngeal teeth. Traditional Chinese medicines (TCMs) are important components of modern medicine. However we know little about the biological activities of TCMs compounds during development. We used zebrafish embryos to study the effects of 3 plants and 5 of their major compounds on the development. We observed that zebrafish embryogenesis was delayed by water extracts from Astragalus membranaceus and Akebia quinata. We also found that the vascular development was affected at different levels by Salvia miltiorrhiza water extracts and by its 3 major components either used alone or mixed together.Our results show that EDCs and TCMs can cause problems during zebrafish embryogenesis. They also show that zebrafish is a powerful tool for rapid in vivo screening of small molecules and their effects on development. This work also enables us to draw a parallel between EDC and some TCMS, which may act on similar targets, such as nuclear receptors.
148

Exposure to Estrogenic Endocrine Disrupting Chemicals and Brain Health

Preciados, Mark 11 May 2018 (has links)
The overall objective of this dissertation was to examine exposures to the estrogenic endocrine disrupting chemicals (EEDCs), phthalates, bisphenol-A (BPA), and the metalloestrogens cadmium (Cd), arsenic (As), and manganese (Mn) in an older geriatric aged-population and examine associations with brain health. Given the evidence that EEDCs affect brain health and play a role in the development of cognitive dysfunction and neurodegenerative disease, and the constant environmental exposure through foods and everyday products has led this to becoming a great public health concern. Using a bioinformatic approach to find nuclear respiratory factor 1 (NRF1) gene targets involved in mitochondrial dysfunction, that are both estrogen and EEDC-sensitive, we found several genes involved in the gene pathways of Alzheimer’s disease (AD): APBB2, EIF2S1, ENO1, MAPT, and PAXIP1. Using the Center for Disease Control and Prevention (CDC), National Health and Nutrition Examination Survey (NHANES) 2011-2014 datasets to assess EEDC bioburden and associations with surrogate indicators of brain health, which include cognitive scores, memory questions, and taste and smell data, we found phthalate bioburden to be significantly higher in those with adverse brain health vii and significantly higher in females. In our logistic regression model when controlling for all known and suspected covariates in AD, in females, the phthalates in females ECP, MBP, MOH, MZP, and MIB in males and the phthalates COP, ECP, MBP, MC1, MEP, MHH, MOH, and MIB were significantly associated with poor cognitive test scores, poor memory, and taste and smell dysfunction. Among the metalloestrogens, Cd bioburden was higher in those with poor cognitive performance, poor memory, and taste and smell dysfunction, with the trend more significant in males. Among oral contraceptive (OC) and HRT (hormone replacement therapy) use, in our logistic regression model when controlling for all known and suspected covariates in AD, past OC and HRT use was associated with better cognitive test scores. The study provides further evidence of the complex role EEDCs play in overall brain health through other biological mechanisms and fills a gap in knowledge that demonstrates EEDCs effects on brain health in a geriatric age population.
149

Development of electrochemical ZnSe Quantam dots biosensors for low-level detection of 17β-Estradiol estrogenic endocrine disrupting compound

Jijana, Abongile Nwabisa January 2010 (has links)
<p>The main thesis hub was on development of two electrochemical biosensors for the determination of 17&beta / -estradiol: an estrogenic endocrine disrupting compound. Endocronology have significantly shown that the endocrine disruptors contribute tremendously to health problems encountered by living species today, problems such as breast cancer, reproductive abnormalities, a decline in male population most significant to aquatic vertebrates, reduced fertility and other infinite abnormalities recurring in the reproductive system of mostly male species. The first biosensor developed for the detection of 17&beta / -estradiol endocrine disrupting compound / consisted of an electro-active polymeric 3-mercaptoprorionic acid capped zinc selenide quantum dots cross linked to horseradish peroxidase (HRP) enzyme as a bio-recognition element. The second biosensor developed was comprised of cysteamine self assembled to gold electrode, with 3-mercaptopropionic acid capped zinc selenide quantum dots cross linked to cytochrome P450-3A4 (CYP3A4) enzyme in the presence of 1-ethyl-3-(3- dimethylaminopropyl)carbodiimide hydrochloride and succinimide.</p>
150

The effects of wastewater treatment plant effluent and agricultural runoff on the reproductive systems of fathead minnow, Pimephales promelas

Kromrey, Natalie A., University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
Endocrine disrupting compounds and pesticides have been detected in rivers and irrigation canals of Southern Alberta, a semiarid region with irrigation-dependent crop production, intensive livestock operations, and a growing human population. However, little is known about the effects of agricultural runoff or wastewater treatment plant (WWTP) effluent in Southern Alberta on fish. Reproductive effects of WWTP effluents from the cities of Lethbridge and Medicine Hat, as well as agricultural runoff in the Lethbridge Northern Irrigation District canals, were investigated in a field study with wild fathead minnows (FHMN) in the Oldman and the South Saskatchewan rivers, in Alberta, Canada, and in a laboratory study with laboratory reared FHMN exposed in vivo to the city of Lethbridge WWTP effluent for 21 days. Biochemical and morphological endpoints were measured to characterize reproductive status. Liver vitellogenin, a biomarker of exposure to estrogen mimics, was analyzed using quantitative RT-PCR, and gonadal histology was used to determine sex, gonadal maturity, and intersex. Adverse reproductive effects were detected in FHMN exposed for 21 days to 10 and 25% of Lethbridge WWTP effluent. In the field, effluents from both Lethbridge and Medicine Hat had an effect on the reproductive systems of FHMN. In canals, reproductive effects were detected in wild fathead minnows in years when water quality in irrigation drain canals decreased. Exposure to pesticides was estimated using acetylcholinesterase (AChE) inhibition. Exposure to Lethbridge WWTP effluent did not inhibit AChE, whereas results from the field study were inconclusive. In conclusion, reproductive systems of fathead minnows in Southern Alberta were impacted by anthropogenic chemicals. / xi, 104 leaves : ill. (some col.), maps ; 29 cm

Page generated in 0.1062 seconds