• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation of Endohedral Metallofullerenes by using Metal Carbides and Metal Carbonyls

Yang, Chun-Wen 14 August 2010 (has links)
none
2

Study the Preparation of Endohedral Metallofullerenes by Direct Current Arc Discharge Method

Liu, Nai-Lun 07 August 2006 (has links)
Endohedral metallofullerenes have special structures, therefore we are interested in. High-temperature laser vaporization method and direct current arc discharge method, which are the two methods for preparing endohedral metallofullerenes. Here we study the preparation of endohedral metallofullerenes by direct current arc discharge method, which uses two graphite rods as electrode and vaporizes the one which infill metal complex in high temperature and low helium gas pressure environment. We study in some metal complexes such as Mo(C5Ph5)2, Fe(CO)9, Ag and Au. After reaction, we collect the soot produced in reaction and choose different solvents to separate the products from it with Soxhlet extraction.
3

Synthesis of Endohedral Metallofullerenes and Phosphino-fullerene Metal Complexes

Chen, Chia-Hsiang 23 July 2012 (has links)
none
4

Novel preparation of endohedral metallofullerenes via laser vaporization of fullerene/metal pellets

Bailey, John Anderson 09 May 2009 (has links)
Electric-arc vaporization of graphite rod/metal (or metal oxide) mixtures in an inert He atmosphere has been the method of choice for the production of endohedral metallofullerenes (Am@C2n). However, yields of endohedral metallofullerenes have been limited to only a few percent of the total fullerene yield, making the production and isolation of macroscopic quantities (grams) difficult. In the present study, fullerene/metal mixtures have been vaporized using a CO₂-laser beam. The sample pellets employed in the laser vaporization were prepared from empty-cage fullerenes (C60, C70, C76, C78, C84, ..• ) and small percentages, by weight, of metal or nletal oxide (La203, SC203, Y 203, Sc, Y, Er). In addition, a sample mixture of a scandium endohedral metallofullerene extract, prepared by electric-arc vaporization, was subjected to the laser. Vaporized samples were analyzed by negative-ion chemical ionization mass spectrometry and by normal phase HPLC. Inert atmospheres of helium, argon, and xenon were compared for optimization of yields of endohedral metallofullerenes, as well as for production of unique endohedral species not observed by production via electric-arc vaporization. Scandium, yttrium, and erbium endohedral metallofullerenes were synthesized by vaporization of fullerene mixtures and the appropriate metal. Optimum conditions were realized with pellet temperatures greater than or equal to 3000°C and inert gas pressures of -100 Torr. This method of CO₂ laser vaporization also served as a valuable tool to analyze the production mechanisms of fullerenes and endohedral metallofullerenes, such as production pathways (Le., C60 -> higher fullerenes -> endohedral metallofullerenes). / Master of Science
5

Computational analysis of electronic properties and mechanism of formation of endohedral fullerenes and graphene with Fe atoms

Deng, Qingming 13 May 2016 (has links) (PDF)
In this thesis, a series of computational studies based on density functional theory (DFT) and density functional tight-binding (DFTB) is presented to deeply understand experimental results on the synthesis of endohedral fullerenes and graphene/iron hybrids at atomic level. In the first part, a simple and efficient model is proposed to evaluate the strain experienced by clusters encapsulated in endohedral metallofullerenes (EMFs). Calculations for the sole cluster, either in the neutral or the charged state, cannot be used for this goal. However, when the effect of the carbon cage is mimicked by small organic π-systems (such as pentalene and sumanene), the cluster has sufficient freedom to adopt the optimal configuration, and therefore the energetic characteristics of the EMF-induced distortion of the cluster can be evaluated. Both nitride and sulfide clusters were found to be rather flexible. Hence, they can be encapsulated in carbon cages of different size and shape. For carbide M2C2 cluster the situation is more complex. The optimized cluster can adopt either butterfly or linear shapes, and these configurations have substantially different metal-metal distance. Whereas for Sc2C2 both structures are isoenergetic, linear form of the Y2C2 cluster is substantially less stable than the butterfly-shaped configuration. These results show that phenomenon of the “nanoscale fullerene compression” once proposed by Zhang et al. (J. AM. CHEM. SOC. (2012),134(20)) should be “nanoscale fullerene stretching”. Finally, the results also reveal that both Ti2S and Ti2C2 cluster are strained in corresponding EMF molecules, but the origin of the strain is opposite: C78-D3h(5) cage imposes too long Ti···Ti distance for the sulfide cluster and too short distance for the carbide cluster. In the second part of the thesis, possible fullerene geometries and electronic structures have been explored theoretically for the species detected in mass spectra of the Sc-EMF extract synthesized using CH4 as a reactive gas. Two most promising candidates, namely Sc4C@C80-Ih(7) and Sc4C3@C80-Ih(7), have been identified and further studied at the DFT level. For Sc4C@C80, the tetrahedral Sc4 cluster with the central μ4-C atom was found to be 10 kJ/mol more stable than the square cluster. For Sc4C3@C80, the calculation showed that the most stable is the Sc4C3 cluster in which the triangular C3 moiety is η3- and η2-coordinated to Sc atoms. Whereas Sc4C@C80 has rather small HOMO-LUMO gap and low ionization potential, the HOMO-LUMO gap of Sc4C3@C80 is substantially higher and exceeds that of Sc4C2@C80. In the third part, computational studies of structures and reactivity are described for a new type of EMFs with a heptagon that has been produced in the arc-discharge synthesis. DFT computations predict that LaSc2N@Cs(hept)-C80 is more stable than LaSc2N@D5h-C80, so the former should be synthesized in much higher yield than observed. This disagreement may be ascribed to the kinetic factors rather than thermodynamic stability. Because of prospective applications of this EMFs by introducing functional groups, the influence of the heptagon on the chemical properties have been further evaluated. Thermodynamically and kinetically preferred reaction sites are studied computationally for Prato and Bingel-Hirsch cycloaddition reactions. In both types of reactions the heptagon is not affected, and chemical reactivity is determined by the adjacent pentalene units. Thermodynamically controlled Prato addition is predicted to proceed regioselectively across the pentagon/pentagon edges, whereas the most reactive sites in kinetically-controlled Bingel-Hirsch reaction are the carbon atoms next to the pentagon/pentagon edge. Fourth, although various EMFs have been successfully synthesized and characterized, the formation mechanism is still not known in details, and hence control of the synthesis products is rather poor. Therefore, EMF self-assembly process in Sc/carbon vapor in the presence and absence of cooling gas (helium) and reactive gas (NH3 and CH4) is systematically investigated using quantum chemical molecular dynamics (QM/MD) simulations based on the DFTB potentials. The cooling gas effect is that the presence of He atoms accelerates formation of pentagons and hexagons and reduces the size of formed carbon cages in comparison to the analogous He-free simulations. As a result, the Sc/C/He system yields a large number of successful trajectories (i.e. leading to the Sc-EMFs) with more realistic cage-size distribution than the Sc/C system. Encapsulation of Sc atoms within the carbon cage was found to proceed via two parallel mechanisms. The main mechanism involves nucleation of the several hexagons and pentagons with Sc atoms already at the early stages of the carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at high temperatures. Further growth of the carbon cage results in encapsulation of one or two Sc atoms within the forming fullerene. Another encapsulation mechanism is observed in rare cases. In this process, the closed cage is formed with Sc being a part of the carbon network, i.e. being bonded by three or four Sc–C σ-bonds. However, such intermediates are found to be unstable, and transform into the endohedral fullerenes within few picoseconds of annealing. In perfect agreement with experimental studies, extension of the simulation to Fe and Ti showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). The role of “reactive gas” in the EMF synthesis is revealed in dedicated simulations of the fullerene formation in the presence of several molecules of CH4 or NH3. When concentration of reactive gas is high, carbon vapor tends to form graphene flakes or other carbon species terminated by hydrogen atoms, whereas the yield of empty fullerenes is very low. Conversely, with additional metal atoms (Sc) and the same number of NH3 molecules, the yield of fullerenes constantly increase from 5 to 65% which is ascribed to the catalytic activity of metal atoms in the nucleation of carbon cages already at early stage. Moreover, due to the presence of hydrogen atoms from the reactive gas, the carbon cage formation requires much longer time, which provides sufficient reaction time to encapsulate 3 or 4 Sc atoms within one cage. It explains preferential formation of clusterfullerenes in experiments with reactive gas. At the same time, monometallofullerenes and dimetallofullerenes are the main products in absence of reactive gas. We also provide possible growth mechanisms of carbide and cyano-clusterfullerenes in details to elucidate how the intracluster goes into the cage. A possible growth mechanism of nitride clusterfullerenes has been proposed based on DFT results. In the last part, a free-standing crystalline single-atom thick layer of Fe has been studied theoretically. By investigating the energy difference, ΔE, between a suspended Fe monolayer and a nanoparticle using the equivalent number of Fe atoms, one can estimate that the largest stable membrane should be ca. 12 atoms wide or 3 × 3 nm2 which is in excellent agreement with the experimental observation. Otherwise, the possibility of C, O, N atoms embedded into the Fe membrane can been fully excluded by DFTB and DFT simulations, which agrees with electron energy loss spectroscopy (EELS) measurement. A significantly enhanced magnetic moment for single atom thick Fe membranes (3.08 μB) is predicted by DFT as compared to the bulk BCC Fe (2.1 μB), which originates from the 2D nature of the Fe membrane since the dz2 orbital is out-of-plane while the dxy orbital is in-plane.
6

Effects of non-covalent interactions on electronic structure and anisotropy in lanthanide-based single-molecule magnets: theoretical studies

Dubrovin, Vasilii 08 November 2021 (has links)
This work describes theoretical studies on molecular and electronic structures of lanthanide-based single-molecule magnets focusing on their magnetic properties. In this work, two main problems are covered: the structural ordering of endohedral fullerenes in different supramolecular arrangements, and the magnetic anisotropy of lanthanides in different charge coordinations. The basic methodes used in this work are density functional theory and multiconfigurational self-consistent field.:CHAPTER 1. THEORETICAL FOUNDATIONS OF RARE-EARTH MAGNETISM 12 1.1. Single-molecule magnetism and 4f-elements 14 1.1.1. Electronic structure of 4f-elements 16 1.1.2. LS-coupling scheme 19 1.1.3. Parameterization of the Crystal-Field splitting effect. 20 1.1.4. Zeeman splitting for a free ion 24 1.1.5. Spin Hamiltonian and pseudospin approximation 24 1.1.6. Kramers theorem 25 1.1.7. Weak and strong molecular interactions. 26 1.2. Computational methods in application to Ln-based SMMs 27 1.2.1. Density functional theory (DFT). 28 1.2.2. Multiconfigurational methods in quantum chemistry 33 1.3. Role of molecular structure in single-molecular magnetism 41 1.3.1. Complexes of SMMs with organic molecules 45 1.3.2. SMMs deposited on surfaces 46 CHAPTER 2. STRUCTURAL ORDERING IN COCRYSTALS OF EMFs AND Ni(OEP) 49 2.1. Ordering in endohedral metallofullerenes 49 2.2. Modeling details 51 2.3. Conformer analysis 54 2.4. Electrostatic potential 58 CHAPTER 3. ISOMERISM OF Dy2ScN@C80 DEPOSITED ON SURFACES 61 3.1. Modeling details 62 3.2. Cluster conformation analysis 69 3.3. Charge density analysis 75 CHAPTER 4. Ho|MgO AS A SINGLE-ATOMIC MAGNET. FV-MAGNETISM. 80 4.1. DFT description of Ln|MgO 85 4.2. Ho|MgO system: ab initio calculations 92 4.3. Magnetic properties of lanthanides with FV magnetism 99 4.4. Generalized ligand field and spin Hamiltonians for FV systems. 101 CHAPTER 5. FV-MAGNETISM IN [Ln2+] METALLOCENE COMPLEXES 107 5.1. TbII(CpiPr5)2 DFT-model 108 5.2. FV-interaction in terms of ab initio multiconfigurational approach 113 5.3. Point-charge model 115
7

Computational analysis of electronic properties and mechanism of formation of endohedral fullerenes and graphene with Fe atoms: Computational analysis of electronic properties and mechanism of formation of endohedral fullerenes and graphene with Fe atoms

Deng, Qingming 05 February 2016 (has links)
In this thesis, a series of computational studies based on density functional theory (DFT) and density functional tight-binding (DFTB) is presented to deeply understand experimental results on the synthesis of endohedral fullerenes and graphene/iron hybrids at atomic level. In the first part, a simple and efficient model is proposed to evaluate the strain experienced by clusters encapsulated in endohedral metallofullerenes (EMFs). Calculations for the sole cluster, either in the neutral or the charged state, cannot be used for this goal. However, when the effect of the carbon cage is mimicked by small organic π-systems (such as pentalene and sumanene), the cluster has sufficient freedom to adopt the optimal configuration, and therefore the energetic characteristics of the EMF-induced distortion of the cluster can be evaluated. Both nitride and sulfide clusters were found to be rather flexible. Hence, they can be encapsulated in carbon cages of different size and shape. For carbide M2C2 cluster the situation is more complex. The optimized cluster can adopt either butterfly or linear shapes, and these configurations have substantially different metal-metal distance. Whereas for Sc2C2 both structures are isoenergetic, linear form of the Y2C2 cluster is substantially less stable than the butterfly-shaped configuration. These results show that phenomenon of the “nanoscale fullerene compression” once proposed by Zhang et al. (J. AM. CHEM. SOC. (2012),134(20)) should be “nanoscale fullerene stretching”. Finally, the results also reveal that both Ti2S and Ti2C2 cluster are strained in corresponding EMF molecules, but the origin of the strain is opposite: C78-D3h(5) cage imposes too long Ti···Ti distance for the sulfide cluster and too short distance for the carbide cluster. In the second part of the thesis, possible fullerene geometries and electronic structures have been explored theoretically for the species detected in mass spectra of the Sc-EMF extract synthesized using CH4 as a reactive gas. Two most promising candidates, namely Sc4C@C80-Ih(7) and Sc4C3@C80-Ih(7), have been identified and further studied at the DFT level. For Sc4C@C80, the tetrahedral Sc4 cluster with the central μ4-C atom was found to be 10 kJ/mol more stable than the square cluster. For Sc4C3@C80, the calculation showed that the most stable is the Sc4C3 cluster in which the triangular C3 moiety is η3- and η2-coordinated to Sc atoms. Whereas Sc4C@C80 has rather small HOMO-LUMO gap and low ionization potential, the HOMO-LUMO gap of Sc4C3@C80 is substantially higher and exceeds that of Sc4C2@C80. In the third part, computational studies of structures and reactivity are described for a new type of EMFs with a heptagon that has been produced in the arc-discharge synthesis. DFT computations predict that LaSc2N@Cs(hept)-C80 is more stable than LaSc2N@D5h-C80, so the former should be synthesized in much higher yield than observed. This disagreement may be ascribed to the kinetic factors rather than thermodynamic stability. Because of prospective applications of this EMFs by introducing functional groups, the influence of the heptagon on the chemical properties have been further evaluated. Thermodynamically and kinetically preferred reaction sites are studied computationally for Prato and Bingel-Hirsch cycloaddition reactions. In both types of reactions the heptagon is not affected, and chemical reactivity is determined by the adjacent pentalene units. Thermodynamically controlled Prato addition is predicted to proceed regioselectively across the pentagon/pentagon edges, whereas the most reactive sites in kinetically-controlled Bingel-Hirsch reaction are the carbon atoms next to the pentagon/pentagon edge. Fourth, although various EMFs have been successfully synthesized and characterized, the formation mechanism is still not known in details, and hence control of the synthesis products is rather poor. Therefore, EMF self-assembly process in Sc/carbon vapor in the presence and absence of cooling gas (helium) and reactive gas (NH3 and CH4) is systematically investigated using quantum chemical molecular dynamics (QM/MD) simulations based on the DFTB potentials. The cooling gas effect is that the presence of He atoms accelerates formation of pentagons and hexagons and reduces the size of formed carbon cages in comparison to the analogous He-free simulations. As a result, the Sc/C/He system yields a large number of successful trajectories (i.e. leading to the Sc-EMFs) with more realistic cage-size distribution than the Sc/C system. Encapsulation of Sc atoms within the carbon cage was found to proceed via two parallel mechanisms. The main mechanism involves nucleation of the several hexagons and pentagons with Sc atoms already at the early stages of the carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at high temperatures. Further growth of the carbon cage results in encapsulation of one or two Sc atoms within the forming fullerene. Another encapsulation mechanism is observed in rare cases. In this process, the closed cage is formed with Sc being a part of the carbon network, i.e. being bonded by three or four Sc–C σ-bonds. However, such intermediates are found to be unstable, and transform into the endohedral fullerenes within few picoseconds of annealing. In perfect agreement with experimental studies, extension of the simulation to Fe and Ti showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). The role of “reactive gas” in the EMF synthesis is revealed in dedicated simulations of the fullerene formation in the presence of several molecules of CH4 or NH3. When concentration of reactive gas is high, carbon vapor tends to form graphene flakes or other carbon species terminated by hydrogen atoms, whereas the yield of empty fullerenes is very low. Conversely, with additional metal atoms (Sc) and the same number of NH3 molecules, the yield of fullerenes constantly increase from 5 to 65% which is ascribed to the catalytic activity of metal atoms in the nucleation of carbon cages already at early stage. Moreover, due to the presence of hydrogen atoms from the reactive gas, the carbon cage formation requires much longer time, which provides sufficient reaction time to encapsulate 3 or 4 Sc atoms within one cage. It explains preferential formation of clusterfullerenes in experiments with reactive gas. At the same time, monometallofullerenes and dimetallofullerenes are the main products in absence of reactive gas. We also provide possible growth mechanisms of carbide and cyano-clusterfullerenes in details to elucidate how the intracluster goes into the cage. A possible growth mechanism of nitride clusterfullerenes has been proposed based on DFT results. In the last part, a free-standing crystalline single-atom thick layer of Fe has been studied theoretically. By investigating the energy difference, ΔE, between a suspended Fe monolayer and a nanoparticle using the equivalent number of Fe atoms, one can estimate that the largest stable membrane should be ca. 12 atoms wide or 3 × 3 nm2 which is in excellent agreement with the experimental observation. Otherwise, the possibility of C, O, N atoms embedded into the Fe membrane can been fully excluded by DFTB and DFT simulations, which agrees with electron energy loss spectroscopy (EELS) measurement. A significantly enhanced magnetic moment for single atom thick Fe membranes (3.08 μB) is predicted by DFT as compared to the bulk BCC Fe (2.1 μB), which originates from the 2D nature of the Fe membrane since the dz2 orbital is out-of-plane while the dxy orbital is in-plane.

Page generated in 0.122 seconds