Spelling suggestions: "subject:"endwall"" "subject:"andwall""
11 |
A Detailed Study of Fan-Shaped Film-Cooling for a Nozzle Guide Vane for an Industrial Gas TurbineColban, William F. IV 04 December 2005 (has links)
The goal of a gas turbine engine designer is to reduce the amount of coolant used to cool the critical turbine surfaces, while at the same time extracting more benefit from the coolant flow that is used. Fan-shaped holes offer this opportunity, reducing the normal jet momentum and spreading the coolant in the lateral direction providing better surface coverage. The main drawback of fan-shaped cooling holes is the added manufacturing cost from the need for electrical discharge machining instead of the laser drilling used for cylindrical holes.
This research focused on examining the performance of fan-shaped holes on two critical turbine surfaces; the vane and endwall. This research was the first to offer a complete characterization of film-cooling on a turbine vane surface, both in single and multiple row configurations. Infrared thermography was used to measure adiabatic wall temperatures, and a unique rigorous image transformation routine was developed to unwrap the surface images.
Film-cooling computations were also done comparing the performance of two popular turbulence models, the RNG-kε and the v2-f model, in predicting film-cooling effectiveness. Results showed that the RNG-kε offered the closest prediction in terms of averaged effectiveness along the vane surface. The v2-f model more accurately predicted the separated flow at the leading edge and on the suction side, but did not predict the lateral jet spreading well, which led to an over-prediction in film-cooling effectiveness.
The intent for the endwall surface was to directly compare the cooling and aerodynamic performance of cylindrical holes to fan-shaped holes. This was the first direct comparison of the two geometries on the endwall. The effect of upstream injection and elevated inlet freestream turbulence was also investigated for both hole geometries. Results indicated that fan-shaped film-cooling holes provided an increase in film-cooling effectiveness of 75% on average above cylindrical film-cooling holes, while at the same time producing less total pressure losses through the passage. The effect of upstream injection was to saturate the near wall flow with coolant, increasing effectiveness levels in the downstream passage, while high freestream turbulence generally lowered effectiveness levels on the endwall. / Ph. D.
|
12 |
Experimental Study of Gas Turbine Endwall Cooling with Endwall Contouring under Transonic ConditionsRoy, Arnab 03 March 2014 (has links)
The effect of global warming due to increased level of greenhouse gas emissions from coal fired thermal power plants and crisis of reliable energy resources has profoundly increased the importance of natural gas based power generation as a major alternative in the last few decades. Although gas turbine propulsion system had been primarily developed and technological advancements over the years had focused on application in civil and military aviation industry, use of gas turbine engines for land based power generation has emerged as the most promising candidate due to higher thermal efficiency, abundance of natural gas resources, development in generation of hydrogen rich synthetic fuel (Syngas) using advanced gasification technology for further improved emission levels and strict enforcement in emission regulations on installation of new coal based power plants. The fundamental thermodynamic principle behind gas turbine engines is Brayton cycle and higher thermal efficiency is achieved through maximizing the Turbine Inlet Temperature (TIT). Modern gas turbine engines operate well beyond the melting point of the turbine component materials to meet the enhanced efficiency requirements especially in the initial high pressure stages (HPT) after the combustor exit. Application of thermal barrier coatings (TBC) provides the first line of defense to the hot gas path components against direct exposure to high temperature gases. However, a major portion of the heat load to the airfoil and passage is reduced through injection of secondary air from high pressure compressor at the expense of a penalty on engine performance. External film cooling comprises a significant part of the entire convective cooling scheme. This can be achieved injecting coolant air through film holes on airfoil and endwall passages or utilizing the high pressure air required to seal the gaps and interfaces due to turbine assembly features. The major objective is to maximize heat transfer performance and film coverage on the surface with minimum coolant usage.
Endwall contouring on the other hand provides an effective means of minimizing heat load on the platform through efficient control of secondary flow vortices. Complex vortices form due to the interaction between the incoming boundary layer and endwall-airfoil junction at the leading edge which entrain the hot gases towards the endwall, thus increasing surface heat transfer along its trajectory. A properly designed endwall profile can weaken the effects of secondary flow thereby improving the aerodynamic and associated heat transfer performance.
This dissertation aims to investigate heat transfer characteristics of a non-axisymmetric contoured endwall design compared to a baseline planar endwall geometry in presence of three major endwall cooling features – upstream purge flow, discrete hole film cooling and mateface gap leakage under transonic operating conditions. The preliminary design objective of the contoured endwall geometry was to minimize stagnation and secondary aerodynamic losses. Upstream purge flow and mateface gap leakage is necessary to prevent ingestion to the turbine core whereas discrete hole cooling is largely necessary to provide film cooling primarily near leading edge region and mid-passage region. Different coolant to mainstream mass flow ratios (MFR) were investigated for all cooling features at design exit isentropic Mach number (0.88) and design incidence angle. The experiments were performed at Virginia Tech's quasi linear transonic blow down cascade facility. The airfoil span increases in the mainstream flow direction in order to match realistic inlet/exit airfoil surface Mach number distribution. A transient Infrared (IR) thermography technique was employed to measure the endwall surface temperature and a novel heat transfer data reduction method was developed for simultaneous calculation of heat transfer coefficient (HTC) and adiabatic cooling effectiveness (ETA), assuming a 1D semi-infinite transient conduction. An experimental study on endwall film cooling with endwall contouring at high exit Mach numbers is not available in literature.
Results indicate significant benefits in heat transfer performance using the contoured endwall in presence of individual (upstream slot, discrete hole and mateface gap) and combined (upstream slot with mateface gap) cooling flow features. Major advantages of endwall contouring were observed through reduction in heat transfer coefficient and increase in coolant film coverage by weakening the effects of secondary flow and cross passage pressure differential. Net Heat Flux Reduction (NHFR) analysis was carried out combining the effect of heat transfer coefficient and film cooling effectiveness on both endwall geometries (contoured and baseline) where, the contoured endwall showed major improvement in heat load reduction near the suction side of the platform (upstream leakage only and combined upstream with mateface leakage) as well as further downstream of the film holes (discrete hole film cooling). Detailed interpretation of the heat transfer results along with near endwall flow physics has also been discussed. / Ph. D.
|
13 |
Aerodynamic Performance of High Turning Airfoils and the Effect of Endwall Contouring on Turbine PerformanceAbraham, Santosh 30 September 2011 (has links)
Gas turbine companies are always focused on reducing capital costs and increasing overall efficiency. There are numerous advantages in reducing the number of airfoils per stage in the turbine section. While increased airfoil loading offers great advantages like low cost and weight, they also result in increased aerodynamic losses and associated issues. The strength of secondary flows is influenced by the upstream boundary layer thickness as well as the overall flow turning angle through the blade row. Secondary flows result in stagnation pressure loss which accounts for a considerable portion of the total stagnation pressure loss occurring in a turbine passage. A turbine designer strives to minimize these aerodynamic losses through design changes and geometrical effects. Performance of airfoils with varying loading levels and turning angles at transonic flow conditions are investigated in this study. The pressure difference between the pressure side and suction side of an airfoil gives an indication of the loading level of that airfoil. Secondary loss generation and the 3D flow near the endwalls of turbine blades are studied in detail. Detailed aerodynamic loss measurements, both in the pitchwise as well as spanwise directions, are conducted at 0.1 axial chord and 1.0 axial chord locations downstream of the trailing edge. Static pressure measurements on the airfoil surface and endwall pressure measurements were carried out in addition to downstream loss measurements. The application of endwall contouring to reduce secondary losses is investigated to try and understand when contouring can be beneficial. A detailed study was conducted on the effectiveness of endwall contouring on two different blades with varying airfoil spacing. Heat transfer experiments on the endwall were also conducted to determine the effect of endwall contouring on surface heat transfer distributions. Heat transfer behavior has significant effect on the cooling flow needs and associated aerodynamic problems of coolant-mainstream mixing.
One of the primary objectives of this study is to provide data under transonic conditions that can be used to confirm/refine loss predictions for the effect of various Mach numbers and gas turning. The cascade exit Mach numbers were varied within a range from 0.6 to 1.1. A published experimental study on the effect of end wall contouring on such high turning blades at high exit Mach numbers is not available in open literature. Hence, the need to understand the parametric effects of endwall contouring on aerodynamic and heat transfer performance under these conditions. / Ph. D.
|
14 |
Development of a robust numerical optimization methodology for turbine endwalls and effect of endwall contouring on turbine passage performancePanchal, Kapil V. 09 November 2011 (has links)
Airfoil endwall contouring has been widely studied during the past two decades for the reduction of secondary losses in turbine passages. Although many endwall contouring methods have been suggested by researchers, an analytical tool based on the passage design parameters is still not available for designers. Hence, the best endwall contour shape is usually decided through an optimization study. Moreover, a general guideline for the endwall shape variation can be extrapolated from the existing literature. It has not been validated whether the optimum endwall shape for one passage can be fitted to other similar passage geometry to achieve, least of all a non-optimum but a definite, reduction in losses. Most published studies were conducted at low exit Mach numbers and only recently some studies on the effect of endwall contouring on aerodynamics performance of a turbine passage at high exit Mach numbers have been published. There is, however, no study available in the open literature for a very high turning blade with a transonic design exit Mach number and the effect of endwall contouring on the heat transfer performance of a turbine passage.
During the present study, a robust, aerodynamic performance based numerical optimization methodology for turbine endwall contouring has been developed. The methodology is also adaptable to a range of geometry optimization problems in turbomachinery. It is also possible to use the same methodology for multi-objective aero-thermal optimization. The methodology was applied to a high turning transonic turbine blade passage to achieve a geometry based on minimum total pressure loss criterion. The geometry was then compared with two other endwall geometries. The first geometry is based on minimum secondary kinetic energy value instead of minimum total pressure loss criterion. The second geometry is based on a curve combination based geometry generation method found in the literature. A normalized contoured surface topology was extracted from a previous study that has similar blade design parameters. This surface was then fitted to the turbine passage under study in order to investigate the effect of such trend based surface fitting. Aerodynamic response of these geometries has been compared in detail with the baseline case without any endwall contouring.
A new non-contoured baseline design and two contoured endwall designs were provided by Siemens Energy, Inc. The pitch length for these designs is about 25% higher than the turbine passage used for the endwall optimization study. The aerodynamic performance of these endwalls was studied through numerical simulations. Heat transfer performance of these endwall geometries was experimentally investigated in the transonic turbine cascade facility at Virginia Tech. One of the contoured geometries was based on optimum aerodynamic loss reduction criterion while the other was based on optimum heat transfer performance criterion. All the three geometries were experimentally tested at design and off-design Mach number conditions. The study revealed that endwall contouring results in significant performance benefit from the heat transfer performance point of view. / Ph. D.
|
15 |
Adiabatic Effectiveness Measurements of Leakage Flows along the Hub Region of Gas Turbine EnginesRanson, William Wayne 28 May 2004 (has links)
To prevent melting of turbine blades, numerous cooling schemes have been developed to cool the blades using cooler air from the compressor. Unfortunately, the clearance gap between adjacent hub sections allows coolant to leak into the hub region. Coolant flow also leaks into the hub region through gaps between individual stages. The results of a combined experimental and computational study of cooling along the hub of a first stage turbine blade caused by leakage flows are discussed in detail. Additionally, this study examines a novel cooling feature, called a microcircuit, which combines internal convective cooling with external film cooling.
For the experimental investigation, scaled up blades were tested in a low speed wind tunnel. Adiabatic effectiveness measurements were made with infrared thermography of the entire hub region for a range of leakage flow conditions. For the computations, a commercially available computational fluid dynamics (CFD) code, FLUENT 6.0, was used to simulate the various flows.
Results show that featherseal leakage flows provide small cooling benefits to the hub. Increases in featherseal flow provide no additional cooling to the hub region. Unlike the featherseal, leakage flows from the front rim provide ample cooling to the hub region, especially the leading edge of the blade passage. None of the leakage flows provide significant cooling to the pressure side region of the hub or trailing edge suction side. With the addition of the hub microcircuits, there is improved hub cooling of the suction side of the blades. Though the coolant exit uniformity was low and affected by the featherseal flow, the microcircuits were shown to provide more cooling along the hub region. Good agreements were observed between the computational and experimental results, though computations over-predicted front rim cooling and microcircuit uniformity. / Master of Science
|
16 |
Aerodynamic Investigation of Upstream Misalignment over the Nozzle Guide Vane in a Transonic CascadeLee, Yeong Jin 06 June 2017 (has links)
The possibility of misalignments at interfaces would be increased due to individual parts' assembly and external factors during its operation. In actual engine representative conditions, the upstream misalignments have effects on turbines performance through the nozzle guide vane passages. The current experimental aerodynamic investigation over the nozzle guide vane passage was concentrated on the backward-facing step of upstream misalignments. The tests were performed using two types of vane endwall platforms in a 2D linear cascade: flat endwall and axisymmetric converging endwall. The test conditions were a Mach number of 0.85, Re_ex 1.5*10^6 based on exit condition and axial chord, and a high freestream turbulence intensity (16%), at the Virginia tech transonic cascade wind tunnel. The experimental results from the surface flow visualization and the five-hole probe measurements at the vane-passage exit were compared with the two cases with and without the backward-facing step for both types of endwall platforms.
As a main source of secondary flow, a horseshoe vortex at stagnation region of the leading edge of the vane directly influences other secondary flows. The intensity of the vortex is associated with boundary layer thickness of inlet flow. In this regard, the upstream backward-facing step as a misalignment induces the separation and attachment of the inlet flow sequentially, and these cause the boundary layer of the inlet flow to reform and become thinner locally. The upstream-step positively affects loss reduction in aerodynamics due to the thinner inlet boundary layer, which attenuates a horseshoe vortex ahead of the vane cascade despite the development of the additional vortices. And converging endwall results in an increase of the effect of the upstream misalignment in aerodynamics, since the inlet boundary layer becomes thinner near the vane's leading edge due to local flow acceleration caused by steep contraction of the converging endwall. These results show good correlation with many previous studies presented herein. / Master of Science / In response to climate change and limited resources, fossil fuel prices are expected to rise and energy policies are expected to change. Under these circumstances, there is a growing demand in the industry to provide an affordable option for improving the efficiency of technology. Energy efficiency is one of most cost effective ways to improve the competitiveness of all businesses and reduce energy costs for consumers.
Regarding the current study topic in particular, the gas turbine is an internal combustion engine that extracts energy, which is resultant from the liquid fuel flow, and is then converted into mechanical energy to drive a compressor or other devices. Gas turbines are used in many applications such as, to power aircraft, electrical generators, pumps, and gas compressors in industrial fields.
Because the gas turbine has a probability of unaligned connections of components due to assembly characteristics of its huge size, performance is affected. To consider issue, an experimental study was conducted related to the energy efficiency for an actual engine’s representative conditions; the current study focuses on the upstream backward facing step of the unaligned connections and highlights the practical effects of the unaligned connection and converging geometry.
These backward facing unaligned connections are shown to have positive effects for reducing aerodynamic losses by weakening a main source of the loss, even despite the development of the additional losses. And, the application of converging geometry to the gas turbine also results in loss reduction due to local flow acceleration. These results show good correlation with the many previous studies presented herein.
|
17 |
The Effect of Density Ratio on Steep Injection Angle Purge Jet Cooling for a Converging Nozzle Guide Vane Endwall at Transonic ConditionsSibold, Ridge Alexander 17 September 2019 (has links)
The study presented herein describes and analyzes a detailed experimental investigation of the effects of density ratio on endwall thermal performance at varying blowing rates for a typical nozzle guide vane platform purge jet cooling scheme. An axisymmetric converging endwall with an upstream doublet staggered cylindrical hole purge jet cooling scheme was employed. Nominal exit flow conditions were engine representative and as follows: {rm Ma}_{Exit} = 0.85, {rm Re}_{Exit,C_{ax}} = 1.5 times {10}^6, and large-scale freestream Tu = 16%. Two blowing ratios were investigated corresponding to the upper and lower engine extrema. Each blowing ratio was investigated amid two density ratios; one representing typical experimental neglect of density ratio, at DR = 1.2, and another engine representative density ratio achieved by mixing foreign gases, DR = 1.95. All tests were conducted on a linear cascade in the Virginia Tech Transonic Blowdown Wind Tunnel using IR thermography and transient data reduction techniques. Oil paint flow visualization techniques were used to gather quantitative information regarding the alteration of endwall flow physics due two different blowing rates of high-density coolant. High resolution endwall adiabatic film cooling effectiveness, Nusselt number, and Net Heat Flux Reduction contour plots were used to analyze the thermal effects.
The effect of density is dependent on the coolant blowing rate and varies greatly from the high to low blowing condition. At the low blowing condition better near-hole film cooling performance and heat transfer reduction is facilitated with increasing density. However, high density coolant at low blowing rates isn't adequately equipped to penetrate and suppress secondary flows, leaving the SS and PS largely exposed to high velocity and temperature mainstream gases. Conversely, it is observed that density ratio only marginally affects the high blowing condition, as the momentum effects become increasingly dominant. Overall it is concluded density ratio has a first order impact on the secondary flow alterations and subsequent heat transfer distributions that occur as a result of coolant injection and should be accounted for in purge jet cooling scheme design and analysis.
Additionally, the effect of increasing high density coolant blowing rate was analyzed. Oil paint flow visualization indicated that significant secondary flow suppression occurs as a result of increasing the blowing rate of high-density coolant. Endwall adiabatic film cooling effectiveness, Nusselt number, and NHFR comparisons confirm this. Low blowing rate coolant has a more favorable thermal impact in the upstream region of the passage, especially near injection. The low momentum of the coolant is eventually dominated and entrained by secondary flows, providing less effectiveness near PS, near SS, and into the throat of the passage. The high momentum present for the high blowing rate, high-density coolant suppresses these secondary flows and provides enhanced cooling in the throat and in high secondary flow regions. However, the increased turbulence impartation due to lift off has an adverse effect on the heat load in the upstream region of the passage. It is concluded that only marginal gains near the throat of the passage are observed with an increase in high density coolant blowing rate, but severe thermal penalty is observed near the passage onset. / Master of Science / Gas turbine technology is used frequently in the burning of natural gas for power production. Increases in engine efficiency are observed with increasing firing temperatures, however this leads to the potential of overheating in the stages following. To prevent failure or melting of components, cooler air is extracted from the upstream compressor section and used to cool these components through various highly complex cooling schemes. The design and operational adequacy of these schemes is highly subject to the mainstream and coolant flow conditions, which are hard to represent in a laboratory setting.
This experimental study explores the effects of various coolant conditions, and their respective response, for a purge jet cooling scheme commonly found in engine. This scheme utilizes two rows of staggered cylindrical holes to inject air into the mainstream from platform, upstream of the nozzle guide vane. It is the hope that this air forms a protective layer, effectively shielding the platform from the hostile mainstream conditions. Currently, little research has been done to quantify these effects of purge flow cooling scheme while mimicking engine geometry, mainstream and coolant conditions.
For this study, an endwall geometry like that found in engine with a purge jet cooling scheme is studied. Commonly, an upstream gap is formed between the combustor lining and first stage vane platform, which is accounted for in this testing. Mainstream and coolant flow conditions can have large impacts on the results gathered, so both were matched to engine conditions. Varying of coolant density and injection rate is studied and quantitative results are gathered. Results indicate coolant fluid density plays a large role in purge jet cooling, and with neglection of this, potential thermal failure points could be overlooked This is exacerbated with less coolant injection. Interestingly, increasing the amount of coolant injected decreases performance across much of the passage, with only marginal gains in regions of complex flow. These results help to better explain the impacts of experimental neglect of coolant density, and aid in the understanding of purge jet coolant injection.
|
18 |
Optimization of endwall film-cooling in axial turbinesThomas, Mitra January 2014 (has links)
Considerable reductions in gas turbine weight and fuel consumption can be achieved by operating at a higher turbine entry temperature. The move to lean combustors with flatter outlet temperature profiles will increase temperatures on the turbine endwalls. This work will study methods to improve endwall film cooling, to allow these advances. Turbine secondary flows are caused by a deficit in near-wall momentum. These flow features redistribute near-wall flows and make it difficult to film-cool endwalls. In this work, endwall film cooling was studied by CFD and validated by experimental measurements in a linear cascade. This study will add to the growing body of evidence that injection of high momentum coolant into the upstream boundary layer can suppress secondary flows by increasing near-wall momentum. The reduction of secondary flows allows for effective cooling of the endwall. It is also noted that excess near-wall momentum is undesirable. This leads to upwash on the vane, driving coolant away from the endwall. A passive-scalar tracking method has been devised to isolate the contribution of individual film cooling holes to cooling effectiveness. This method was used to systematically optimize endwall cooling systems. Designs are presented which use half the coolant mass flow compared to a baseline design, while maintaining similar cooling effectiveness levels on the critical trailing endwall. By studying the effect of coolant injection on vane inlet total pressure profile, secondary flows were suppressed and upwash on the vane was reduced. The methods and insight obtained from this study were applied to a high pressure nozzle guide vane endwall from a current engine. The optimized cooling system developed offers significant improvement over the baseline.
|
19 |
Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat TransferMeador, Charles Michael 2010 December 1900 (has links)
Improvements to gas turbine efficiency depend closely on cooling technologies,
as efficiency increases with turbine inlet temperature. To aid in this process, simulations that consider real engine conditions need to be considered. The first step
towards this goal is a benchmark study using direct numerical simulations to consider
a single periodic film cooling hole that characterizes the error in adiabatic boundary
conditions, a common numerical simpliflication. Two cases are considered: an adiabatic case and a conjugate case. The adiabatic case is for validation to previous work
conducted by Pietrzyk and Peet. The conjugate case considers heat transfer in the
solid endwall in addition to the
fluid, eliminating any simplified boundary conditions.
It also includes an impinging jet and plenum, typical of actual endwall configurations.
The numerical solver is NEK5000 and the two cases were run at 504 and 128 processors for the adiabatic and conjugate cases respectively. The approximate combined
time is 100,000 CPU hours. In the adiabatic case, the results show good agreement
for average velocity profiles but over prediction of the film cooling effectiveness. A
convergence study suggests that there may be an area of unresolved flow, and the film cooling momentum flux may be too high. Preliminary conjugate results show
agreement with velocity profiles, and significant differences in cooling effectiveness.
Both cases will need to be refined near the cooling hole exit, and another convergence
study done. The results from this study will be used in a larger case that considers
an actual turbine vane and film cooling hole arrangement with real engine conditions.
|
20 |
Investigations of flow and film cooling on turbine blade edge regionsYang, Huitao 30 October 2006 (has links)
The inlet temperature of modern gas turbine engines has been increased to achieve higher thermal
efficiency and increased output. The blade edge regions, including the blade tip, the leading edge, and the
platform, are exposed to the most extreme heat loads, and therefore, must be adequately cooled to
maintain safety.
For the blade tip, there is tip leakage flow due to the pressure gradient across the tip. This leakage
flow not only reduces the blade aerodynamic performance, but also yields a high heat load due to the thin
boundary layer and high speed. Various tip configurations, such as plane tip, double side squealer tip, and
single suction side squealer tip, have been studied to find which one is the best configuration to reduce the
tip leakage flow and the heat load. In addition to the flow and heat transfer on the blade tip, film cooling
with various arrangements, including camber line, upstream, and two row configurations, have been
studied. Besides these cases of low inlet/outlet pressure ratio, low temperature, non-rotating, the high
inlet/outlet pressure ratio, high temperature, and rotating cases have been investigated, since they are
closer to real turbine working conditions.
The leading edge of the rotor blade experiences high heat transfer because of the stagnation flow.
Film cooling on the rotor leading edge in a 1-1/2 turbine stage has been numerically studied for the design
and off-design conditions. Simulations find that the increasing rotating speed shifts the stagnation line
from the pressure side, to the leading edge and the suction side, while film cooling protection moves in the
reverse direction with decreasing cooling effectiveness. Film cooling brings a high unsteady intensity of
the heat transfer coefficient, especially on the suction side. The unsteady intensity of film cooling
effectiveness is higher than that of the heat transfer coefficient.
The film cooling on the rotor platform has gained significant attention due to the usage of low-aspect
ratio and low-solidity turbine designs. Film cooling and its heat transfer are strongly influenced by the
secondary flow of the end-wall and the stator-rotor interaction. Numerical predictions have been
performed for the film cooling on the rotating platform of a whole turbine stage. The design conditions
yield a high cooling effectiveness and decrease the cooling effectiveness unsteady intensity, while the high rpm condition dramatically reduces the film cooling effectiveness. High purge flow rates provide a better
cooling protection. In addition, the impact of the turbine work process on film cooling effectiveness and
heat transfer coefficient has been investigated. The overall cooling effectiveness shows a higher value than
the adiabatic effectiveness does.
|
Page generated in 0.0762 seconds