Spelling suggestions: "subject:"endwall"" "subject:"andwall""
41 |
Airfoil, Platform, and Cooling Passage Measurements on a Rotating Transonic High-Pressure TurbineNickol, Jeremy B. 22 September 2016 (has links)
No description available.
|
42 |
Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat TransferRubensdörffer, Frank G. January 2006 (has links)
The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before the nozzle guide vane. This means that the nozzle guide vane endwall heat load for modern gas turbines is much higher compared to previous generation gas turbines. Therefore the prediction of the nozzle guide vane flow field and endwall heat transfer is crucial for the engineering task of the design layout of the vane endwall cooling system. The present study is directed towards establishing new in-depth aerodynamic and endwall heat transfer knowledge for an advanced nozzle guide vane of a modern industrial gas turbine. To reach this objective the physical processes and effects which cause the different flow fields and the endwall heat transfer pattern in a baseline configuration, a combustion chamber variant, a heat shield variant without and with additional cooling air and a cavity variant without and with additional cooling air have been investigated. The variants, which differ from the simplified baseline configuration, apply design elements which are commonly used in real modern gas turbines. This research area is crucial for the nozzle guide vane endwall heat transfer, especially for the advanced design of the nozzle guide vane of a modern industrial gas turbine and has so far hardly been investigated in the open literature. For the experimental aerodynamic and endwall heat transfer research of the baseline configuration of the advanced nozzle guide vane geometry a new low pressure, low temperature test facility has been developed, designed and constructed, since no experimental heat transfer data exist in the open literature for this type of vane configuration. The new test rig consists of a linear cascade with the baseline configuration of the advanced nozzle guide vane geometry with four upscaled airfoils and three flow passages. For the aerodynamic tests the two middle airfoils and the hub and the tip endwall are instrumented with pressure taps to monitor the Mach number distribution. For the heat transfer tests the temperature distribution on the hub endwall is measured via thermography. The analysis of these measurements, including comparisons to research in the open literature shows that the new test rig generates accurate and reproducible results which give confidence that it is a reliable tool for the experimental aerodynamic and heat transfer research on the advanced nozzle guide vane of a modern industrial gas turbine. Previous own research work together with the numerical analysis performed in another part of the project as well as conclusions from a detailed literature study lead to the conclusion that advanced Navier-Stokes CFD tools with the v2-f turbulence model are most suitable for the calculation of the flow field and the endwall heat transfer of turbine vanes and blades. Therefore this numerical tool, validated against different vane and blade geometries and for different flow conditions, has been chosen for the numerical aerodynamic and endwall heat transfer research of the advanced nozzle guide vane of a modern industrial gas turbine. The evaluation of the numerical and experimental investigations of the baseline configuration of the advanced design of a nozzle guide vane shows the flow field of an advanced mid-loaded airfoil design with the features to reduce total airfoil losses. For the hub endwall of the baseline configuration of the advanced design of a nozzle guide vane the flow characteristics and heat transfer features of the classical vane endwall secondary flow model can be detected with a very weak intensity and geometric extension compared to the studies of less advanced vane geometries in the open literature. A detailed analysis of the numerical simulations and the experimental data showed very good qualitative and quantitative agreement for the three-dimensional flow field and the endwall heat transfer. These findings, together with the evaluations obtained from the open literature, lead to the conclusions that selected CFD software Fluent together with the applied v2-f turbulence model exhibits a high level of general applicability and is not tuned to a special vane or blade geometry. Therefore the CFD code Fluent with the v2-f turbulence model has been selected for the research of the influence of the several geometric variants of the baseline configuration on the flow field and the hub endwall heat transfer of the advanced nozzle guide vane of a modern industrial gas turbine. Most of the vane endwall heat transfer research in the open literature has been carried out only for baseline configurations of the flow path between combustion chamber and nozzle guide vane. Such a simplified geometry consists of a long, planar undisturbed approach length upstream of the nozzle guide vane. The design of real modern industrial gas turbines however requires often significant variations from this baseline configuration consisting of air-cooled heat shields and purged cavities between the combustion chamber and the nozzle guide vane. A detailed evaluation of the flow field and the endwall heat transfer shows major differences between the baseline and the heat shield configuration. The heat shield in front of the airfoil of the nozzle guide vane influences the secondary flow field and the endwall heat transfer pattern strongly. Additional cooling air, released under the heat shield has a distinctive influence as well. Also the cavity between the combustion chamber and the nozzle guide vane affects the secondary flow field and the endwall heat transfer pattern. Here the influence of additional cavity cooling air is more decisive. The results of the detailed studies of the geometric variants are applied to formulate guidelines for an optimized design of the flow path between the combustion chamber and the nozzle guide vane and the nozzle guide vane endwall cooling configuration of next-generation industrial gas turbines. / QC 20100917
|
43 |
Aerodynamic Investigations of a High Pressure Turbine Vane with Leading Edge Contouring at Endwall in a Transonic Annular Sector CascadeSaha, Ranjan January 2012 (has links)
Efficiency improvement is an important aspect to reduce the use of fossil-based fuel in order to achieve a sustainable future. Gas turbines are mainly fossil-fuel based turbomachines, and, therefore, efficiency improvement is still the subject of many on-going research activities in the gas turbine community. This study is incorporated into a research project that investigates design possibilities of efficiency improvement at the high pressure turbine (HPT) stage. In the search for HPT-stage efficiency gains, leading edge (LE) contouring near the endwall is one of the methods found in the published literature that has shown a potential to increase the efficiency by decreasing the amount of secondary losses. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage. Particularly, the influence of the LE fillet on losses and flow structure is investigated concentrating on the secondary flow. The core investigation is of an experimental nature. Detailed investigations of the flow field in an annular sector cascade (ASC) are presented with and without the LE fillet, using a geometric replica of a modern gas turbine nozzle guide vane (NGV) with a contoured tip endwall. Furthermore, a separate investigation is performed on a hub-cooled NGV, which focuses on endwalls, specifically the interaction between the hub film cooling and the mainstream (MS). The experimental investigations indicate that the LE fillet has no significant effect on the flow and energy losses of the investigated NGV. The reason why the LE fillet does not affect the losses might be due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. Oil flow visualisation for the baseline case displays a clear saddle point, with a separation line where the horseshoe (HS) vortex separates into the suction side (SS) and the pressure side (PS), whereas for the filleted case, the saddle point is not noticeable. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the SS surfaces and does not reach the PS of the hub surface, leaving it less protected from the hot gas. / För att åstadkomma en uthållig kraftproduktion i framtiden och en minskning i användandet av fossila bränslen är effektivitetsförbättringar av central betydelse. Gasturbiner är i grund och botten fossilbaserade turbomaskiner och därför bedrivs forsknings- och utvecklingsarbete kring verkningsgradsförbättringar. Den här studien ingår i ett forskningsprojekt som undersöker designmodifieringar med målet att höja verkningsgraden för ett högtrycksturbinsteg. Förändringar av bladets eller ledskenans framkantsgeometri nära ändväggarna har i den öppna litteraturen funnits vara en lovande metod för att minska ändväggsförlusterna. Det övergripande målet med denna studie är att bidra till utvecklingen av effektiva högtrycksturbinsteg för gasturbiner. Kärnan i undersökningen är experimentell. Särskilt påverkan från förändring av framkanten på förluster och flödesstruktur undersöks, med fokus på det sekundära flödet. Detaljerade strömningsundersökningar i ett bågformat statorgitter bestående av en geometrisk replika av en stator från en modern gasturbin presenteras, med och utan geometrisk förändring av framkanten. Vidare så genomförs en separat undersökning av en filmkyld ledskena utan framkantsförändring med fokus på interaktionen mellan filmkylningen vid inre ändväggen och huvudflödet. De experimentella undersökningarna visar att den undersökta geometriska förändringen av framkanten inte är av signifikant betydelse för strömningsförlusterna med den studerade ledskenan. Anledningen till att designförändringen inte påverkar förlusterna kan bero på användandet av en tredimensionell ledskena med en existerande typisk kärlradie mellan ledskenan och ändväggarna. Observationerna visar också att den komplexa ändväggsströmningen är starkt beroende av det inkommande gränsskiktets egenskaper. Oljevisualisering för referensledskenan visar en tydlig stagnationspunkt på ändväggen där gränsskiktet delas upp likt en hästskoformation i virvlar på sug- respektive trycksidan av ledskenan. För den modifierade framkanten har ingen tydlig stagnationspunkt på ändväggen observerats. Spårgasundersökningar med den filmkylda ledskenan visar att filmkylningen på den inre plattformen är koncentrerad längs sugsidan och når inte trycksidan på plattformen som därmed är mindre skyddad mot den varma gasströmningen. / QC 20120330
|
44 |
Design and Implementation of Periodic Unsteadiness Generator for Turbine Secondary Flow StudiesFletcher, Nathan James 18 June 2019 (has links)
No description available.
|
45 |
Heat Transfer and Film Cooling Performance on a Transonic Converging Nozzle Guide Vane Endwall With Purge Jet Cooling and Dual Cavity Slashface LeakageVan Hout, Daniel Richard 06 November 2020 (has links)
The following study presents an experimental and computational investigation on the effects of implementing a dual cavity slashface configuration and varying slashface coolant leakage mass flow rate on the thermal performance for a 1st stage nozzle guide vane axisymmetric converging endwall. An upstream doublet staggered cylindrical hole jet cooling scheme provides additional purged coolant with consistent conditions throughout the investigation. The effects are measured in engine representative transonic mainstream and coolant flow conditions where Mexit = 0.85, Reexit = 1.5 × 106, freestream turbulence intensity of 16%, and a coolant density ratio of 1.95.
Four combinations of slashface Fwd and Aft cavity mass flow rate are experimentally analyzed by comparing key convective heat transfer parameters. Data is collected and reduced using a combination of IR thermography and a linear regression technique to map endwall heat transfer performance throughout the passage. A flow visualization study is employed using 100 cSt oil-based paint to gather qualitative insights into the endwall flow field. A complimentary CFD study is carried out to gather additional understanding of the endwall flow ingestion and egression behavior as well as comparing performance against a conventional cavity configuration.
Experimental comparisons indicate slashface mass flow rate variations have a minor effect on passage film cooling coverage. Instead, coolant coverage across the passage is primarily driven by upstream purge coolant. However, endwall heat transfer coefficient is reduced as much as 20% in mid-passage areas as leakage flow decreases. This suggests that changes in leakage flow maintains a first order correlation in altering passage aerodynamics that, despite relatively consistent film cooling coverage, also leads to significant changes in net heat flux reduction in the passage.
Endwall flow behavior proves to be complex along the gap interface showing signs of ingestion, egression, and tangential flow varying spatially throughout the gap. CFD comparisons suggests that a dual cavity configuration varies the gap static pressure distribution closer to the mainstream pressure throughout the passage in high speed applications compared to a single cavity configuration. The resulting decelerating flow creates a more stable endwall flow profile and favorable coolant environment by reducing boundary layer thinning and shear interaction in near gap endwall tangential flow. / Master of Science / Gas turbines are often exposed to high temperatures as they convert hot, energetic gas streams into mechanical motion. As turbines receive higher temperature gases, their efficiency increases and reduces waste. However, these temperatures can get too hot for turbine parts. To survive these high temperatures, turbine components are often assembled with a gap in between to allow the part to expand and contrast when it heats and cools. Relatively cold air is also fed into the gap to help prevent hot gases from entering. This cold air can also feed into other pathways to flow onto the turbine component's surface and act as an insulating layer to the hot gas and protect the component from overheating.
The study presented investigates an assembly gap, referred to as a slashface gap, found in the middle of a vane located immediately after gas combustion with cold air leaking through. One unique aspect of this study is that there are two pathways for cold air, or coolant, to leak through when, typically, there is only one. The slashface gap lies on a wall which the vanes are attached to, referred to as the endwall. Multiple small holes on the endwall in between the combustor and vanes jet out coolant to try and protect the endwall from hot gases. These holes, called jump cooling holes, point out towards the vanes and angled more shallowly so that the holes do not face directly up from the endwall. The holes are angled as they are meant to gracefully spray coolant to cover and insulate the endwall instead of mixing with the hot air above.
The experiments found that changing how much coolant is leaked through the slashface has little effect on how much coolant from jump cooling holes covered the endwall. However, smaller slashface leaks better protect the endwall from the hot gas by forcing it to move smoother and give off less heat across the endwall rather than a tumbling like manner. The experiment is modeled on a computer simulation to determine the differences of a slashface gap with the typical one coolant pathway and the coolant dual pathway configuration that is tested in the experiments. This simulation discovered that having two coolant pathways significantly reduces how much hot gas and jump cooling coolant enters and leaves the slashface gap. This makes the surrounding airflow along the endwall travel more smoothly and does not give off as much heat as if a single coolant pathway configuration is used instead.
|
Page generated in 0.0436 seconds