• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution au développement d'une analogie vibroacoustique pour la modélisation du bruit d'origine aérodynamique / Contribution to the development of a vibro-acoustic analogy for modeling aerodynamic noise

Serre, Ronan 17 December 2014 (has links)
Cette thèse propose une modélisation du bruit d'origine aérodynamique, avec une attention particulière aux mécanismes de transfert d'énergie entre l'écoulement et le milieu de propagation. Une première partie aborde le problème de la création et du transport de l'énergie acoustique en milieu aérodynamique. Trois grands courants de pensée sont identifiés : l'approche eulérienne linéarise les équations valables en cas de fluide parfait pour former une loi de conservation ; l'approche dissipative développe les équations de Navier-Stokes, fait intervenir les fluctuations de vorticité comment moteur du mouvement acoustique ou décompose la quantité de mouvement en une théorie potentielle ; l'approche lagrangienne décrit le déplacement lagrangien de la perturbation qui suit le passage de l'onde acoustique. La première est la plus naturelle. La deuxième est la plus complète et la seule à expliquer la création d'énergie par l'aérodynamique. Une théorie générale voyant l'acoustique comme le seul champ généralisé qui se trouve piégé par l'aérodynamique en découle. La dernière est la plus prometteuse pour l'avenir. Dans une deuxième partie, les moyens permettant le calcul du champ acoustique à partir d'une sollicitation surfacique sont présentés. Il s'agit de la méthode d'extrapolation des ondes de Kirchhoff basée sur la pression, la formulation de Ffowcs-Williams & Hawkings basée sur les débits, et l'intégrale de Rayleigh basée sur une vitesse vibratoire. Une troisième partie de la thèse utilise les formalismes d'excitation surfacique pour étudier la réaction du milieu acoustique à des excitations génériques sous formes de paquets d'onde, représentatives de l'aérodynamique instationnaire. La réponse acoustique est caractérisée par la direction d'émission privilégiée du rayonnement et son efficacité, défini comme le taux de transfert d'énergie entre l'excitation et son milieu. On montre notamment que l'introduction d'une dissymétrie amont-aval dans l'excitation augmente fortement son efficacité, de même que la prise en compte d'un milieu de propagation en mouvement uniforme. Dans une dernière partie, ces considérations sont étendues au rayonnement d'une couche de mélange et adaptées en se basant sur l'analogie de Liepmann. Cette approche peu répandue est une intégrale de Rayleigh dont l'excitation est la dérivée temporelle de l'épaisseur de déplacement. Les résultats sont comparés avec la base de données d'une simulation acoustique directe et des deux autres méthodes surfaciques. La directivité n'est pas retrouvée par la modélisation proposée. On montre que la prédiction des niveaux nécessite de modéliser une impédance de rayonnement. / This study proposes a model for the noise generated aerodynamically, while focusing on energy transfer mechanisms between the main flow and the propagating medium. Energy harvest in aerodynamic condition is therefore the subject of a first part. Three general trends may be identified ; the eulerian approach uses linearized Euler's equations for inviscid flows in a form of a conservation law ; the dissipating approach expands Navier-Stokes equations in series, relies on vorticity fluctuations to excite the medium or splits velocity or momentum vectors in a general potential theory ; the lagrangian approach describes the lagrangian displacement of the perturbation inherent to an acoustic wave. The first approach is the most commonly adopted. The second one is the most complete and provides aerodynamical mechanisms for energy generation. A general fashion follows where acoustics is a generalized field, trapped by a hydrodynamic impedance. The last one may be subject of close attention for future considerations. In a second part, computational models are presented with their ability to predict acoustic radiation from a surface excitation. These are the Kirchhoff formalism based on the pressure, the Ffowcs Williams & Hawkings formalism based on the mass flow rate and the Rayleigh integral based on the vibration velocity. These are applied in a third part of the study to investigate the response of the acoustic medium to a generique excitation in the form of a wavepacket, representative of unsteady aerodynamics. Such acoustic response is caracterised by its direction of maximum radiation and its efficiency, defined as the rate of energy transfer between the excitation and its surrounding medium. Introducing an upstream-downstream asymmetry in the excitation is showed to significantly enhance its efficiency, as well as a convection velocity in the propagating medium. Within these general considerations, the last part of this study models acoustic excitation in a mixing layer flow based on Liepmann's analogy. This relatively unexplored theory consists in a Rayleigh integral excited by the temporal derivative of the displacement thickness. Results are compared with direct noise computation database and two other methods of surface excitation. Directivity is likely to be found while pressure amplitude is correctly predicted by using a model for radiation impedance.
2

Caractérisation expérimentale de la réponse vibro-acoustique de panneaux sous excitations aléatoires par mesure de fonctions de sensibilité / Experimental characterization of the vibro-acoustic response of panels under random excitation by measurement of sensitivity functions

Marchetto, Christophe 14 February 2018 (has links)
La caractérisation expérimentale de la réponse vibro-acoustique de panneaux excités par des champs de pression aléatoire est d'un grand intérêt dans le monde de la recherche, aussi bien industrielle qu'académique. Dans le domaine des transports, ce type d'excitation se rencontre par exemple lorsqu'un écoulement turbulent se développe en paroi d'un véhicule en mouvement. Les fluctuations de pression induites par la couche limite turbulente excitent les parois qui rayonnent un bruit à l'intérieur de l'habitacle. La reproduction expérimentale de ces fluctuations de pression nécessite des moyens qui peuvent être très coûteux (i.e, tunnel aérodynamique, essais in situ) et dont il est difficile de maîtriser tous les paramètres physiques. Un second exemple de champ de pression aléatoire est le champ acoustique diffus. Celui-ci est généralement reproduit dans une chambre réverbérante que l'on couple souvent à une chambre anéchoïque par l'intermédiaire de la paroi dont on souhaite étudier l'isolation acoustique. Un champ acoustique est supposé diffus si l'énergie acoustique provient de toutes les directions et l'intensité des ondes incidentes est équiprobable, ce qui n'est jamais le cas en pratique (problème des angles rasants, modes propres en basse fréquence, etc.). Il y a donc un fort intérêt à disposer d'un outil de laboratoire permettant de reproduire l'effet d'excitations aléatoires dans un environnement qui peut être contrôlé. C'est dans ce contexte que s'inscrit cette thèse qui a pour but de développer une méthode expérimentale permettant de caractériser le comportement vibro-acoustique de panneaux sous champ de pression aléatoire tout en se passant des moyens de mesures usuels (soufflerie, chambre réverbérante, essais in situ, etc.). Les approches étudiées dans cette thèse se basent sur la formulation mathématique du problème dans le domaine des nombres d'onde. Celle-ci met en évidence une séparation explicite des contributions de l'excitation via son interspectre de pression pariétale, de celles du comportement vibro-acoustique du panneau via des fonctions appelées "fonctions de sensibilité". Supposant donc que l'interspectre de pression pariétale de l'excitation est connu, il suffit de déterminer expérimentalement ces fonctions de sensibilité, sur le panneau ou dans le milieu acoustique, pour déterminer par post-traitement la réponse du panneau à l'excitation considérée. Deux méthodes permettant de déterminer les fonctions de sensibilité seront étudiées numériquement et validées expérimentalement: la méthode par antenne synthétique et la méthode basée sur le principe de réciprocité. Pour étudier la validité de ces méthodes, on compare leurs résultats à ceux obtenus par des moyens standards sur la base de plusieurs indicateurs vibro-acoustiques. Les méthodes sont validées en considérant les deux types d'excitations évoqués précédemment et pour deux types de panneaux: un panneau académique et un panneau "complexe" issu du domaine aéronautique. / The experimental vibro-acoustic characterization of panels submitted to random pressure fields is of great interest in the industry as well as in research laboratories. For the transport sector, this type of excitation can be found when a turbulent flow develops at the wall of a moving vehicle for example. The pressure fluctuations induced by the turbulent boundary layer excite the panels which radiate a noise inside the cabin. The experimental reproduction of those pressure fluctuations requires test means which can be very costly (i.e., wind tunnel, in situ tests) and whose physical parameters can hardly be controlled. The repeatability of measurements can thereby be questioned which makes it hard to compare different technological solutions. A second example of random pressure field is the diffuse acoustic field. This latter is usually reproduced in a reverberant room which is often coupled with an anechoic chamber by means of the panel whose acoustic insulation is to be tested. A pressure field is assumed to be diffuse if the acoustic energy comes from every direction with an equiprobable intensity of the incident waves. This assumption is never fully reached in practice (lack of grazing incident waves, strong modal behavior of the room at low frequencies, etc.). A laboratory tool which allows reproducing the effect of those random excitations in a controlled environment is therefore of great interest. In this context, this thesis aims at developing an experimental method to characterize the vibro-acoustic behavior of panels under random pressure fields without using the common test means (wind tunnel, reverberant room, in situ tests, etc.). For relevance sake, this approach must compensate for the previously stated issues. The approaches studied in this work are based on the mathematical formulation of the problem in the wavenumber domain. This latter allows an explicit separation of the contributions of the excitation via the wall-pressure cross-spectrum, from those of the vibro-acoustic behavior of the panel via so-called `sensitivity functions'. Assuming the wall-pressure cross-spectrum of the excitation is known, it is only required to experimentally determine those sensitivity functions, on the panel or in the acoustic medium, to determine the response of the panel to the considered excitation by post-processing. Two methods aiming at determining the sensitivity functions will be numerically and experimentally studied: the source scanning technique and the method based on the reciprocity principle. Results obtained with those method are compared to measurements using standard test means to attest the validity of those methods. Several vibro-acoustic indicators will be confronted while considering the two previously mentioned excitations and for two types of panels: an academic panel and a `complex' from the aeronautic sector. This latter shows the applicability of the method in an industrial context.

Page generated in 0.0785 seconds