• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resorption cycle heat pump with ammonia-water working fluid

Molyneaux, Glenn Arthur January 2000 (has links)
No description available.
2

The road not taken? : a longitudinal and interdisciplinary examination of energy behaviours

Al-Chalabi, Malek January 2014 (has links)
Albert Einstein believed “we can't solve problems by using the same kind of thinking we used when we created them.” This quote, in my opinion, is particularly relevant for the academic literature that examines individual energy use. I believe that we have historically taken a categorized approach towards looking at individual energy use. Instead of thinking about multiple behaviours widely, we tend to look at individual behaviours deeply - focusing on electricity use, gas use, or travel behaviour in isolation instead of examining them simultaneously. For this reason, this thesis explores if and how an intervention aimed at one energy behaviour may influence or have untargeted effects on other energy behaviours across household energy use and personal travel behaviour from an interdisciplinary research perspective. The relevant literature is reviewed and an innovative methodology is devised to answer the research questions. By examining quantitative and qualitative data, the thesis evaluates the targeted and untargeted effects of an electricity display study across household energy and travel behaviours, assesses the influence that social and technical experiences with the display may have on behaviour, and explores how individuals conceptualize their energy usage to better understand untargeted effects. The findings indicate that 1) in a sample of 19 participants, 15 had untargeted effects in gas and 4 had untargeted effects in gas and travel, 2) the combined effect of social and technical experiences with the display can explain why an untargeted effect did or did not take place, and 3) participants perceived household energy as a resource but perceived travel as a means to move from one place to another. These findings lead to the development of a novel contribution of this research, known as the tangential effect. Contributions to theory and policy, an assessment of the methodological approach, and future research areas are given.
3

The application of phase change materials to cool buildings

Susman, Gideon January 2012 (has links)
Five projects improve understanding of how to use PCM to reduce building cooling energy. Firstly, a post-installation energy-audit of an active cooling system with PCM tank revealed an energy cost of 10.6% of total cooling energy, as compared to an identical tankless system, because PCM under%cooling prevented heat rejection at night. Secondly, development of a new taxonomy for PCM cooling systems allowed reclassification of all systems and identified under-exploited types. Novel concept designs were generated that employ movable PCM units and insulation. Thirdly, aspects of the generated designs were tested in a passive PCM sail design, installed in an occupied office. Radiant heat transfer, external heat discharge and narrow phase transition zone all improved performance. Fourthly, passive PCM product tests were conducted in a 4.2 m3 thermal test cell in which two types of ceiling tile, with 50 and 70% microencapsulated PCM content, and paraffin/copolymer composite wallboards yielded peak temperature reductions of 3.8, 4.4 and 5.2 °C, respectively, and peak temperature reductions per unit PCM mass of 0.28, 0.34 and 0.14 °C/kg, respectively. Heat discharge of RACUS tiles was more effective due to their non-integration into the building fabric. Conclusions of preceding chapters informed the design of a new system composed of an array of finned aluminium tubes, containing paraffin (melt temperature 19.79 °C, latent heat 159.75 kJ/kg) located below the ceiling. Passive cooling and heat discharge is prioritised but a chilled water loop ensures temperature control on hotter days (water circulated at 13 °C) and heat discharge on hotter nights (water circulated at 10 °C). Test cell results showed similar passive performance to the ceiling tiles and wallboards, effective active temperature control (constant 24.6˚C air temperature) and successful passive and active heat discharge. A dynamic heat balance model with an IES% generated UK office’s annual cooling load and PCM temperature%enthalpy functions predicted annual energy savings of 34%.
4

The standardization of major Well-to-Wheel models : measuring uncertainty on a macro level

El-Houjeiri, Hassan M. January 2011 (has links)
This project concentrated upon the development of the Standardization Transport Model (STM) by assembling the largest possible assessment platform. It combines data from all of the major Well-to-Wheel (WtW) models in the field. The STM was developed for each chain under study by formulating the data in the major databases so that the Well-to-Tank processes covered Feedstock Production, Feedstock Transport, Fuel Production and Fuel Distribution. With the addition of Tank-to-Wheel data, a comprehensive STM was obtained for each chain. For each stage there is a range of values that was characterized by a probability distribution and through the use of Monte Carlo simulation the distribution was sampled and overall values for the total energy consumption, in MJ/km, and total GHG emissions in grams of carbon dioxide equivalent per kilometre (gCO2eq/km) were generated. By statistical means these distributions were compared to assess the risk of debt as well as the likelihood of major savings if they were to be implemented. The scope of the analysis was limited to passenger cars transport and does not include other forms of road transport. Major classic WtW models may account for subjective uncertainty in the input parameters of the model but with a default set of inputs which represents only one database and one set of modelling assumptions and choices. This individualism and determinism in the WtW modelling nowadays explains the significant discrepancies that arise across the results from different models. The level of variation presented poses a major problem in the context of policy making and strategic planning. The generation of the STM rests upon the convection that a synthesis which generates a statistically relevant aggregate of the different WtW results from the different models of the major expert groups would eliminate the present inconsistencies and deliver the reliability required for making robust strategic decisions. Advantage was taken of the richness of the STM outputs to assess the sensitivity of the results and identify the major factors of disagreement within the expert systems. Here the STM presents the largest platform of comparison and the most comprehensive evaluation of the different WtW models in the field. The provision of such a sensitivity analysis was not possible without allowing for variation in the elements of the model as done using the STM. Secondly, the key outputs of the model were compared under the criterion of sustainability from both energy and environmental perspectives. This was done by the synthesis of a first-of-its-kind distribution of the difference between the conventional system and the alternative system for each option under study. The output reflects as complete a population as possible of what may occur in reality in terms of direct impact on sustainability. This method of comparison was not possible without synthesizing an aggregate of possibilities as done using the STM. Thirdly, synergies with the power sector were studied to identify which strategies delay the global reduction in GHG emissions and which are to be preferred from an overall perspective. Here the author lead the transport research community in looking on the global benefits of alternative transport systems, rather than only looking through the window of the transport sector, by redrawing the boundary for the analysis of prospective transport systems. Last and not least, the outcomes of the comparative analyses of the STM results were aggregated into a proposed strategic framework for carbon and energy reduction in passenger cars transport. The strategic framework is placed into perspective by building a set of future scenarios and scaling the effect for the progressive implementation of these scenarios and making a comparison with the business-as-usual forecast. The creation of an energy economy based on hydrogen fuel was found to be a highly questionable objective because electrically driven vehicles are superior with regard to systems that are either nuclear resourced or based on non-biomass renewables. For hydrogen, only the option from waste wood via gasification was found to be very attractive. However because only a minor role for hydrogen is foreseen, it is envisaged that the development of a hydrogen infrastructure would not be feasible. Therefore the use of hydrogen will be constrained to decentral systems or central systems with liquid hydrogen distribution. With regard to cultivated biomass, the sugar ethanol options are the best in terms of land use with sugarcane having the advantage of being economic and available for short-term penetration. The safe implementation of sugar ethanol, which includes avoidance of CO₂ emissions from indirect land use change and low fertilizers use, guarantees significant savings and have a good potential for large CO₂ emissions savings. Generally due to land use limitation cultivated biomass based options cannot be sustained on the long term. Last and not least, the CO2 emissions savings from clean coal technology is questionable without CCS technology and even though with the implementation of CCS no significant savings are certain. On the other hand, besides the transport sector the power sector is another major sector of energy resource consumption and careful consideration of any synergies between the sectors is essential for the completeness of the analysis. The strategy in which the use of alternatives such as NG, nuclear and renewables is not diversified but fed only into the power sector is to be preferred as this avoids possible CO₂ emissions from indirect resource use change, and it also isolates the power market to maintain upstream energy security. Finally, the answer to whether it is still possible to save the World from the disastrous consequences of Global Warming is a preliminary "yes" but requires the development and implementation of a complete technology package including nuclear power which is widely debated at the present.
5

A leader without followers? : European Union relations with China and India on climate change, 1990-2009

Torney, Diarmuid January 2012 (has links)
The EU has, for a long time, portrayed itself as an international leader on climate change. Previous studies have tended to focus on the characteristics of EU leadership, but have failed to examine the extent to which EU leadership generates “followership”. Going beyond these existing approaches, this dissertation analyzes not just EU attempts at leadership but also the response of two potential followers: China and India. Based on extensive fieldwork, the dissertation explains the pattern of EU engagement and the response to engagement in each case, and makes three key arguments. First, EU engagement was driven by a desire to build the international role of the EU, but also from 2000 onwards in particular by growing normative concern and material interest within the EU regarding combating climate change. The development of engagement was also conditioned by the broader development of EU relations with China and India. Second, EU engagement took the form of institutionalized dialogue and capacity-building projects. These were generally more extensive in the EU-China case; the EU-India relationship was significantly more limited. Both cases were characterized by a lack of EU capacity—particularly the EU-India case—and to some extent by inconsistency and incoherence. Third, the Chinese Government responded through limited normative emulation and limited but growing lesson-drawing through bilateral cooperation in specific sectors. While the Indian Government also responded through limited normative emulation, the principal Indian response was resistance. Moreover, both the Chinese and Indian Governments resisted the EU approach to the international climate change negotiations. This pattern of engagement and significant resistance stemmed partly from the EU’s failure to develop sufficient capacity for effective engagement, but also partly due to significant differences in the way each side has framed the issue of climate change. Based on these findings, the dissertation concludes that while the EU was not entirely a leader without followers, it has acted as a highly restricted leader in its relations with China and India on climate change.
6

PERSPECTIVES OF ENERGY EFFICIENCY IN INDUSTRIES : PERSPECTIVES OF ENERGY EFFICIENCY IN INDUSTRIES / PERSPECTIVES OF ENERGY EFFICIENCY IN INDUSTRIES : PERSPECTIVES OF ENERGY EFFICIENCY IN INDUSTRIES

Dhivya Nandhini Dayanandan, Dhivya Nandhini January 1994 (has links)
Now a days, there is lot of alternatives available, which provides green and renewable energy. Through these alternatives, the consumer’s demand for energy is being satisfied. It is important to use the available energy in a systematic and efficient way so that there are many benefits. The purpose of this study is to briefly identify the various prospects, problems, and policies for energy efficiency in industries. Basis of purpose on the negative impacts caused due to the increased use of energy consumption in industries. This literature study is based from practical examples of industries, industrial applications and other new technology. As the electric motor system operates most of the industrial processes, the electricity consumption of motors in industries accounts for two thirds of total energy consumption. Influencing energy efficiency in industries provides substantial advantages. Various motor applications such as pumps, fans, air compressors, cooling compressors, variable speed drives is studied for their operation and working conditions. The utilization of energy efficient technologies to a greater extent can perceive savings to the industries. In spite of being aware of potentials of using energy efficient technologies in industries, energy efficient technologies are not widely used. A barrier to energy efficiency is explained as a practice that inhibits the industrial decision of being efficient in terms of energy and finance. The barriers consent with energy efficiency in industries is fair enough to be considered, while compromising energy for temporary prosperity is not upright. Influence of increased energy efficiency in market areas need coordination of all industries and commercial area throughout the country. The coordination between the industries and commercial sectors can be closely achieved by raising energy policies and energy regulations. The energy efficient policies are considered as cognizance for market transformation and this can maintain the industry, the environment, and the energy. The options available for market transformation are enormous. It is suggested to implement the energy efficient policies as energy efficiency is important for sustainable future. By adopting the right policy, at right situation can provide enormous benefits to the process, industry, and nation. A basis of energy efficiency in industrial application can provide potential energy savings for the present and future industrial situation. This can provide a balance between INDUSTRY-ENVIRONMENT-ENERGY.
7

Dopady regulácií v energetike na účinnosť a efektívnosť opatrení v ochrane životného prostredia / Dopady regulácií v energetike na účinnosť a efektívnosť opatrení v ochrane životného prostredia

Poprac, Aleš January 2013 (has links)
The theme of my diploma work is the regulations in energy sector. I will try to describe their impacts on the environment. I will deal with the economic effects of the regulations and their utility for the environment. I will use many criteria for the consideration of these regulations. The main solution of my goals should be the application of the regulations in energy sector to aggregates of national economy. In the first part of my diploma work I will try to define the concept of regulation and I will also mention some kinds of regulation, their methods and goals. In the second part, I will focus on regulations in Czech Republic and I will determine their background and institutions which deal with them. Third part of the work will contain the impacts of the regulations on market mechanism. I will focus on specific economic theories which deal with regulations. Fourth part will determine impacts of the regulations on the environment. I will mention some laws and alternatives for environment which are related to these regulations. Final part of my work will deal with individual regulations and their impact on aggregates of national economy.
8

Pir?lise de borras oleosas de petroleo utilizando nanomateriais

Lima, Cicero de Souza 21 March 2014 (has links)
Made available in DSpace on 2014-12-17T14:09:17Z (GMT). No. of bitstreams: 1 CiceroSL_TESE.pdf: 5334902 bytes, checksum: 41714ced8f45a82dbc84b8d2449a7bee (MD5) Previous issue date: 2014-03-21 / The oily sludge is a complex mix of hydrocarbons, organic impurities, inorganic and water. One of the major problems currently found in petroleum industry is management (packaging, storage, transport and fate) of waste. The nanomaterials (catalysts) mesoporous and microporous are considered promising for refining and adsorbents process for environment protection. The aim of this work was to study the oily sludge from primary processing (raw and treated) and vacuum residue, with application of thermal analyses technique (pyrolysis), thermal and catalytic pyrolysis with nanomaterials, aiming at production petroleum derived. The sludge and vacuum residue were analyzed using a soxhlet extraction system, elemental analysis, thin layer chromatography, thermogravimetry and pyrolysis coupled in gas chromatography/mass spectrometry (Py GC MS). The catalysts AlMCM-41, AlSBA-15.1 e AlSBA-15.2 were synthesized with molar ratio silicon aluminum of 50 (Si/Al = 50), using tetraethylorthosilicante as source of silicon and pseudobuhemita (AlOOH) as source of aluminum. The analyzes of the catalysts indicate that materials showed hexagonal structure and surface area (783,6 m2/g for AlMCM-41, 600 m2/g for AlSBA-15.1, 377 m2/g for AlSBA-15.2). The extracted oily sludge showed a range 65 to 95% for organic components (oil), 5 to 35% for inorganic components (salts and oxides) and compositions different of derivatives. The AlSBA-15 catalysts showed better performance in analyzes for production petroleum derived, 20% increase in production of kerosene and light gas oil. The energy potential of sludge was high and it can be used as fuel in other cargo processed in refinery / A borra oleosa (BO) de petr?leo ? uma mistura complexa de hidrocarbonetos, impurezas org?nicas, inorg?nicas e ?gua. Um dos grandes problemas encontrados atualmente na ind?stria de petr?leo ? o gerenciamento (acondicionamento, armazenamento, transporte e destino) de res?duos. Os nanomateriais (catalisadores) mesoporosos e microporosos s?o considerados promissores em processos de refino de petr?leo e como adsorventes para prote??o ambiental. O objetivo deste trabalho foi estudar a BO de petr?leo oriunda do processamento prim?rio (bruta e tratada) e res?duo de v?cuo, com aplica??o de an?lise termogravim?trica, t?cnica de pir?lise t?rmica e catal?tica com nanomateriais, visando a produ??o de derivado de petr?leo. As borras extra?das em um equipamento soxhlet foram analisadas por an?lise elementar, cromatografia em camada fina, termogravimetria (TG) e pir?lise acoplado a um cromatogr?fico gasoso/espectro de massa (Py-GC/MS). Os catalisadores AlMCM-41 e AlSBA-15 foram sintetizados com uma raz?o molar de s?licio/alum?nio de 50 (Si/Al = 50), usando tetraetilortossilicato (TEOS) como fonte de sil?cio e pseudobuhemita (AlOOH) como a fonte de alum?nio. Os catalisadores indicam que os materiais apresentaram estrutura hexagonal, ?rea espec?fica de 783,6 m2/g para o AlMCM-41, 600 m2/g para o AlSBA-15.1 e 377 m2/g para o AlSBA-15.2). A BO extra?da apresentou de 65 a 95% de componentes org?nicos (?leo), de 5 a 35% de componentes inorg?nicos (sais e ?xidos) e diferentes composi??es dos derivados. Os catalisadores tipo AlSBA-15 apresentaram melhor desempenho na obten??o dos derivados de petr?leo, aumentando em 20% a produ??o de querosene e gas?leo leve. O potencial energ?tico da BO foi elevado, pois ela pode ser utilizada como combust?vel e processada com outras cargas pesadas do petr?leo para a produ??o de diferentes derivados de petr?leo
9

Palladium/Alloy-based Catalytic Membrane Reactor Technology Options for Hydrogen Production: A Techno-Economic Performance Assessment Study

Ma, Liang-Chih 22 January 2016 (has links)
Hydrogen (H2) represents an energy carrier endowed with the potential to contribute to the design of a robust and reliable global energy system by complementing electricity as well as liquid fuels use in an environmentally responsible manner provided that the pertinent H2 production technologies (conventional and new ones) can reach techno-economically attractive performance levels in the presence of irreducible (macroeconomic, fuel market, regulatory) uncertainty. Indeed, the role of H2 in the global energy economy is widely recognized as significant in light also of fast-growing demand in the petrochemical and chemical processing sector as well as future regulatory action on greenhouse gas emissions. Pd and Pd/Alloy-based catalytic membrane reactor (CMR) modules potentially integrated into H2 production (HP-CMR) process systems offer a promising technical pathway towards H2 production with enhanced environmental performance in a carbon-constrained world. However, the lack of accumulated operating experience for HP-CMR plants on the commercial scale poses significant challenges. Therefore, any preliminary attempt to assess their economic viability is certainly justified. A comprehensive techno-economic performance assessment framework has been developed for HP-CMRs with CO2 capture capabilities. A functional Net Present Value (NPV) model has been developed first to evaluate the economic viability of HP-CMRs. The plant/project value of HP-CMR is compared to other competing technology options such as traditional coal-gasification and methane steam reforming-based hydrogen production plants with and without CO2 capture. Sources of irreducible uncertainty (market and regulatory) as well as technology risks are explicitly recognized and the effect of these uncertainty drivers on the plant’s/project’s value is taken into account using Monte-Carlo techniques. Therefore, more realistic distribution profiles of the plant’s economic performance outcomes are generated rather than single-point value estimates. It is shown that future regulatory action on CO2 emissions could induce appealing NPV-distribution profiles for HP-CMRs in the presence of uncertainty and technology risks. Finally, the valuation assessment is complemented with a sensitivity analysis for different representative values of the discount rate that span a reasonable range associated with business and financing risks. It apparently indicates that creatively structured financing mechanisms leading to a reduction of the cost of capital/discount rate could induce more appealing economic performance outcomes and valuation profiles. Furthermore, the proposed research work aims at the development of a methodological framework to assess the economic value of flexible alternatives in the design and operation of HP-CMR plants with carbon capture capabilities under the aforementioned sources of uncertainty. The main objective is to demonstrate the potential value enhancement associated with the long-term economic performance of flexible HP-CMR project investments by managing the uncertainty associated with future environmental regulations. Within the proposed context, promising design flexibility concepts for HP-CMR plants are introduced and operational as well as constructional flexibility options are identified and assessed. In particular, operational flexibility will be realized through periodic and temporary shutdowns of the carbon capture unit in response to regulatory uncertainties. Constructional flexibility will be realized by considering the installation of a carbon capture unit at three strategic periods: 1) installation in the initial design phase, 2) retrofitting at a later stage and 3) retrofitting with preinvestment. Monte Carlo simulations and financial analysis will be conducted in order to demonstrate that, in the presence of irreducible uncertainty, design flexibility options could lead to economic performance enhancement of HP-CMR plants by actively responding to the above sources of uncertainty as they get resolved over the plant’s lifetime.
10

Benchmarking and Modelling the Sustainability Transition of National Electricity System : A Case Study of India

Sharma, Tarun January 2016 (has links) (PDF)
We have dealt with the problem arising from the incongruity between the evolution of the electricity system for meeting the objectives of economic growth, and the human/societal requirements of inclusive and affordable development, and environmental compliance, within the purview of sustainability. We conceive and define the concept of sustainability in the context of national electricity system and adopt an indicator-based hierarchical framework to assess, measure and track its sustainability. The approach necessitates prioritization, quantification and aggregation of multi-dimensional indicators of sustainability. We evaluate the Indian electricity system using this framework by benchmarking the actual dimensional indicator values against upper and lower threshold levels to compute a national electricity system sustainability index (NESSI) for India. The estimated NESSI value for India in 2013 is a low 0.377 (benchmark value is 1), which suggest that India has a substantial sustainability gap to bridge. The approach and the results imply that India or any other emerging/developing country needs to have a serious relook at (i) the goals and targets set for the electricity system, (ii) the set of prioritized technology and policy interventions, and (iii) the models and approaches adopted for strategic electricity planning. The findings from our research clearly indicate that countries like India need to adopt “minimizing sustainability gap” rather than “increasing GDP growth” as the sole criterion for deciding about the challenges raised above for the electricity system. We strongly believe that this approach will not only meet the economic development objective set for the electricity system but also help achieving the societal aspirations as well as environmental compliance. We establish that Indian electricity system is poised for an imminent transition into a sustainable system. What constitutes the inputs, the processes and the outcomes of this transition are of immense interest and have been widely debated in the literature. We motivate and implement an electricity system generation expansion model with multi-attribute technology characterization to model the sustainability transition of electricity system and understand the feasibility, cost and carbon emission implications of generation augmentation. We build on the state of the art resource and technology characterization. We obtain the expansion planning requirements for Indian electricity system by superimposing the projected incremental increase in demand with the retirement schedule. Further, building on the recent advances in power system modelling, we formulate the electricity system transition problem as a grouped integer generation scheduling and generation expansion planning model. This formulation accounts for plant startups, minimum loads, operating reserves, ramping limits and plant life. We run multiple experiments by varying the system configurations for a planning horizon of 18 years till 2032 and characterize the system on select indicators under three dimensions of sustainability for each year. Within the select scenarios, NESSI value in the terminal year varies from 0.481 to 0.51 relative to the base year value of 0.377.We throw some light on how the important questions concerning technology pathways for electricity system sustainability transition can be queried. The approach adopted for this research is two pronged. First is to formulate and subsequently answer the question: What is and what should be the electricity system of India? The second is to answer: what are the prospects for transition of electricity system into a sustainable state? How do probable technology pathways manifest in terms of national electricity system? Can renewable energy deliver? Our proposition –which we validate through this research – is to formulate and subsequently answer the questions in two phases. The two phases are briefly detailed below: In the first phase, the question we have attempted to first formulate and subsequently answer is: what is and what should be the electricity system for India? We propose to employ an indicator based approach for this part of the research, which attempts to evaluate India’s electricity system using the sustainability framework. The analysis of the indicators belonging to economic, social, environmental and institutional dimensions of sustainability will provide a deeper understanding of the system, identify and quantify the prevailing sustainability gaps and develop specific targets for interventions. We begin with a survey of literature in the domain of sustainability assessment. We identify and briefly discuss the essential concepts, ideas and methods used in sustainability assessment. We observe the emergence of electricity related concerns in the wider sustainability discourse. Next, we survey the literature on electricity systems and discuss the intersection of energy systems with development. Than we define the sustainable national electricity system and bring out the synergies between measurement of sustainable development and assessment of objectives of electricity systems. We observe cross country variations in electricity system planning objectives. While focus for developed nations has historically been economic and has subsequently included environmental concerns of climate change and pollution. In addition to economic and environmental aspects, the low levels of access as well as consumption are a reality for India and other developing nations. This adds another dimension to the status assessment and subsequent planning of national electricity system of India. Synthesis of sustainability assessment and objectives of electricity system planning in this phase culminates with conception and evaluation of National Electricity System Sustainability Index (NESSI) for India. The underlying theme throughout this phase is our attempt to first formulate and subsequently answer: What is and what should be the electricity system for India? In the second phase, a modeling approach has been developed to optimally prioritize the interventions (energy-technology supply chains) in response to the specific targets (from Phase 1) for planning a sustainable electricity system for India. All the possible supply chain interventions tracking the transitions from energy resources to electricity in the bus bar on grid (as modeled by a Reference Energy System) form the inputs for the mathematical model. The output is the optimal set of interventions as trade-off solutions, which meet the targets set by the sustainability goal. The criteria like cost, efficiency of transformation, emission coefficients and energy resource availability form the basis for developing the optimal plan. We begin this phase with survey of literature on power system modelling. Electricity system planning has been undertaken in academic and planning domains for several decades. It is only recent that, driven by the imminent challenges of de-carbonization, affordability, equity and security- which has resulted in coevolution of several possible technological, behavioral and policy intervention proposals-there is demand for coherent assessment of these propositions for electricity system transition. In our work, we have focused on supply side technology interventions. Supply side technology intervention propositions for electricity system transition more often than not involve variable renewable energy, i.e., solar and wind. Variable renewable energy technologies pose significant modelling challenges because of their characteristic intermittency which induces complex dynamics in the complimentary system, i.e., electricity generating technologies other than renewable energy. We identify tremendous activity in the domain of electricity system modelling with focus on model representation of electricity system constituents which has significant implications for the outcomes of the planning exercises undertaken with these models. Literature synthesis in this phase culminates with our attempt at mathematical modelling of generation technology pathways for electricity system in transition. Undertaking this exercise has involved preparation of model feeds: energy resource supply profiles, generation technology specifications and demand projections. We have done a series of numerical experiments to establish validity of the model. Subsequently we have validated various scenarios for Indian electricity system representing different levels of transitions, which provides insights which we expect will be useful for the stakeholders. The underlying theme throughout this phase is our attempt to answer the questions: How does one understand electricity system transition? How do electricity generating technologies interact amongst each other to yield certain set of system outputs? Can renewable energy deliver? In our pursuit of finding answers to several questions raised at various points in this thesis and alluded to above, we have done a systematic systemic diagnosis of Indian electricity system. We have developed a multi-dimensional and multi-hierarchical indicator based framework to measure national electricity system sustainability. We have assessed Indian electricity system with this framework, to understand if Indian electricity system is sustainable and how it can transition towards a more sustainable state. Based on this understanding, we have investigated electricity generation technology pathways for a transitioning electricity system. We have modelled India as a single region with aggregate temporal profiles of resource availability and hourly loads. Building on the recent literature on power system modelling and their application, this thesis is a systematic exposition of how the important questions of supply side technology portfolio concerning electricity system sustainability transition can be queried. The results are based on several instances of data inputs. Main contributions from our work are: 1. Introducing the concept of sustainability of national electricity system and defining it comprehensively for the first time. 2. Conceptualizing, developing and validating a multi-dimensional and multi-hierarchical indicator-based framework for assessing and benchmarking national electricity system sustainability. This framework is generalizable and applicable to the electricity systems of all the countries for assessing the sustainability status. 3. A composite measure of National Electricity System Sustainability Index (NESSI), which can be used to identify and quantify prevailing sustainability gaps in the national electricity system and provide a goal for sustainability transition of the electricity system through higher NESSI target values. The constituents (dimensions, themes and indicators) of NESSI can enable identification of interventions and fixing of targets for such a transition. 4. Conceptualized, developed and validated an integrated mathematical model of generation expansion planning (supply augmentation) and generation scheduling with extensive operational details for electricity system in transition. This included: Enumeration and characterization of reference electricity system (energy resources, electricity generating technologies and demand for electricity). Demand profiling which involved estimating annual peak demand and demand for electricity, consideration of annual retiring capacity and computation of representative demand profiles (load curves) for past and future years using time-series load data. Modelling variable renewable energy (wind, solar and hydro) by developing representative energy resource availability profiles using time-series data. Harmonizing the extracted temporal energy resource availability and load profiles to preserve the chronological correlations. Explicit modelling of capacity utilization by proposing and implementing unit profile inversion. Effectively, it implies that generation from the variable generation capacity, e.g., solar capacity is upper bounded by the representative profile corresponding to that capacity. Optimally selected generation technology interventions for planning sustainable electricity system for India under select scenarios. 5. Juxtaposition of indicator-based macro model of electricity system sustainability assessment with bottom-up mathematical model of generation expansion planning and generation scheduling to evaluate official Indian scenarios of electricity system planning for sustainability transition. In summary, we have developed and demonstrated an empirical instance of an integrated methodology, beginning from a systematic diagnosis of the national electricity system to a meaningful solution. Through this thesis, we have attempted to understand the alternate future electricity supply transitions, their implications for society and environment and how they are influenced by the planning decisions. In conclusion, there is substantial activity in all stakeholder domains: research activity, actions by NGOs and the government but given the long term nature of probable interventions, sustained efforts will be required to reach the desired outcomes. Future of grid is the biggest system level problem, which we believe we have illuminated to some extent and which could benefit from further research. While planning exercises using complex models are useful in their own right given the complexities of real world close monitoring and scrutiny of the evolving electricity system and timely course corrections will be critical

Page generated in 0.0884 seconds