Spelling suggestions: "subject:"conergy 0791"" "subject:"coenergy 0791""
11 |
High impedance fault location identification using Bayesian analysis in a shipboard power systemDieker, Joseph January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Sanjoy Das / Noel Schulz / In a shipboard power system (SPS) there are many possible locations for faults along power lines. It is important to identify the location and isolate these faults in order to protect the equipment and loads. The shipboard systems represented in this research are based on an all-electric ship that is presented by Corzine and a simplified version of the same ship. This research considers faults at the ends on the lines. Sensors collect data in order to determine where the fault has occurred. The fault location identification algorithm being presented uses data collected from simulations of different switch configurations and different loads. After the data is collected, Bayesian techniques are used to determine where the fault is located. An online training technique is presented to adjust to changes in loads over time to increase the accuracy of the algorithm.
|
12 |
Improving energy efficiency in state-funded facilities through the development and use of a simplified energy audit procedurePierson, Kimberly D. January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle Riding / Over the past few years, state governments and entities have become concerned with energy consumption and efficiency at their facilities. The Department of Energy has become increasingly involved in energy code enforcement, and has established initiatives to help states monitor and improve energy consumption. In order to reduce energy consumption and increase building efficiency, facilities must be compared to a baseline building and changes made accordingly. The thesis objectives are to establish a process that all states and state-funded facilities can follow that determines the baseline, establish an energy auditing procedure, and recommend monitoring techniques. In addition, this report documents a procedure developed to make recommendations for improvements and select building and equipment upgrades based and return on investment calculations. The procedures and processes established are designed so that any employee, especially non-engineers, can accomplish changes that will improve facility energy efficiency.
In order to develop simplified energy auditing procedures for large and dispersed organizations, a literature review of prevalent energy codes and standards was conducted, as well as documents outlining energy audit procedures. An energy audit workbook outlining a simplified auditing procedure was created. Six KDOT facilities were audited using the procedure as part of the case study. The audit results were then used to determine practical economic calculations and determine viable improvements that reduce energy consumption.
As a result of this research and case study, a simplified energy audit procedure was created. This procedure was developed to include selecting a baseline of requirements, conducting an energy audit, and selecting viable improvements using economics. All of these procedures are able to be executed by any state employee, specifically those at the facilities who may not be engineers.
|
13 |
Geochemical and mineralogical characterization of the Arbuckle aquifer: studying mineral reactions and its implications for CO[subscript]2 sequestrationBarker, Robinson January 1900 (has links)
Master of Science / Department of Geology / Saugata Datta / In response to increasing concerns over release of anthropogenic greenhouse gases the Arbuckle saline aquifer in south-central Kansas has been proposed as a potential site for geologic storage for CO2. Two wells (KGS 1-32 and 1-28) have been drilled to provide data for site specific determination of the storage potential of the Arbuckle. Cores from specific depths within Arbuckle (4164`-5130`) were utilized for study and flow-through experiments. Examination of formation rocks by thin section studies, SEM, XRD and CT scans was carried out to characterize the mineralogy of the core.
Dominant mineralogy throughout the formation is dolomite with large chert nodules and occasional zones with pyrite and argillaceous minerals. Carbonate-silica contacts contain extensive heterogeneity with sulfide minerals and argillaceous material in between. Extensive vugs and microfractures are common. This study focuses on three zones of interest: the Mississippian pay zone (3670`-3700`), a potential baffle in Arbuckle (4400`-4550`) and the proposed CO2 injection zone (4900`-5050`).
Drill stem tests and swabbed brine samples collected from 13 depths throughout the aquifer reveal a saline brine (~50,000-190,000 TDS) dominated by Na+, Ca2+ and Cl-. Elemental ratios of major cations with Cl- demonstrate a typical saline aquifer system. Cl/Br ratios reveal mixing between primary and secondary brines within the aquifer. Ca/Cl and Mg/Cl ratios suggest effect of dolomitization within the brines. δ18O and δ2H isotopes and Li/Cl ratios in the brine suggest the separation of upper and lower Arbuckle by a baffle zone. Swabbed waters provide Fe speciation data and reveal the importance of it in the system.
Laboratory experiments carried out at 40°C and 2100 psi using formation core plug and collected brine identify reaction pathways to be anticipated when supercritical CO2 is injected. Results showed fluctuating chemistries of elements with Ca2+, Mg2+, Na+ and Cl- increasing during the first 15 hours, while Fe, S, and SO42- decrease. For the next 15 hours a reverse trend of the same elements were observed. Alkalinity and pH show inverse relationship throughout the experiment. We conclude that dominant reactions will occur between brine, CO2 and dolomite, calcite, chert, pyrite and argillaceous minerals. There is no perceived threat to freshwater resources in Kansas due to CO2 injection.
|
14 |
Analysis of torrefaction of big bluestem and mixed grass from the Conservation Reserve ProgramLinnebur, Kyle Henry January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Donghai Wang / Biomass torrefaction is an important preprocessing step in improving biomass quality, specifically in terms of physical properties and chemical composition. The objective of this research was to study effects of torrefaction as a pretreatment method on chemical and elemental compositions and thermal properties of Conservation Reserve Program (CRP) biomass. Most CRP grasslands are a mixture of native grasses, and in the state of Kansas, species including indiangrass, big bluestem, little bluestem, sideoats grama, and switchgrass comprise a majority of CRP grounds. Pure forms of big bluestem biomass were analyzed and compared with a mixture of the species that make up CRP lands. Two strategies for torrefaction were tested: one with a pre-dry step and one without. After torrefaction, big bluestem and CRP biomass showed an increase in energy density, making the biomass more attractive as a biofuel source than raw biomass. Big bluestem also showed slightly higher calorific values than that of CRP biomass. The torrefaction process had a significant effect on chemical composition and elemental composition of the biomass. Carbon content increased and oxygen content decreased as torrefaction temperature increased. Glucan and xylose decreased and lignin increased as torrefaction temperature increased. Pre-drying biomass before torrefaction is beneficial to torrefaction of biomass with high moisture content because moisture removal leads to less dry matter loss while maintaining the same calorific value.
|
15 |
Rare earth elements (REE) as geochemical clues to reconstruct hydrocarbon generation historyRamirez-Caro, Daniel January 1900 (has links)
Master of Science / Department of Geology / Matthew Totten / The REE distribution patterns and total concentrations of the organic matter of the Woodford shale reveal a potential avenue to investigate hydrocarbon maturation processes in a source rock. Ten samples of the organic matter fraction and 10 samples of the silicate-carbonate fraction of the Woodford shale from north central Oklahoma were analyzed by methods developed at KSU. Thirteen oil samples from Woodford Devonian oil and Mississippian oil samples were analyzed for REE also. REE concentration levels in an average shale range from 170 ppm to 185 ppm, and concentration levels in modern day plants occur in the ppb levels. The REE concentrations in the organic matter of the Woodford Shale samples analyzed ranged from 300 to 800 ppm. The high concentrations of the REEs in the Woodford Shale, as compared to the modern-day plants, are reflections of the transformations of buried Woodford Shale organic materials in post-depositional environmental conditions with potential contributions of exchanges of REE coming from associated sediments. The distribution patterns of REEs in the organic materials normalized to PAAS (post-Archean Australian Shale) had the following significant features: (1) all but two out of the ten samples had a La-Lu trend with HREE enrichment in general, (2) all but two samples showed Ho and Tm positive enrichments, (3) only one sample had positive Eu anomalies, (4) three samples had Ce negative anomalies, although one was with a positive Ce anomaly, (5) all but three out of ten had MREE enrichment by varied degrees. It is hypothesized that Ho and Tm positive anomalies in the organic materials of the Woodford Shale are reflections of enzymic influence related to the plant physiology. Similar arguments may be made for the Eu and the Ce anomalies in the Woodford Shale organic materials. The varied MREE enrichments are likely to have been related to some phosphate mineralization events, as the Woodford Shale is well known for having abundant presence of phosphate nodules. The trend of HREE enrichment in general for the Woodford Shale organic materials can be related to inheritance from sources with REE-complexes stabilized by interaction between the metals and carbonate ligands or carboxylate ligands or both. Therefore, a reasonable suggestion about the history of the REEs in the organic materials would be that both source and burial transformation effects of the deposited organic materials in association with the inorganic constituents had an influence on the general trend and the specific trends in the distribution patterns of the REEs. This study provides a valuable insight into the understandings of the REE landscapes in the organic fraction of the Woodford Shale in northern Oklahoma, linking these understandings to the REE analysis of an oil generated from the same source bed and comparing it to oil produced from younger Mississippian oil. The information gathered from this study may ultimately prove useful to trace the chemical history of oils generated from the Woodford Shale source beds.
|
16 |
Dynamics on complex networks with application to power gridsPahwa, Sakshi January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Caterina Scoglio / The science of complex networks has significantly advanced in the last decade and
has provided valuable insights into the properties of real world systems by evaluating their
structure and construction. Several phenomena occurring in real technological and social
systems can be studied, evaluated, quantified, and remedied with the help of network science.
The electric power grid is one such real technological system that can be studied through
the science of complex networks. The electric grid consists of three basic sub-systems:
Generation, Transmission, and Distribution. The transmission sub-system is of particular
interest in this work because its mesh-like structure offers challenging problems to complex
networks researchers. Cascading dynamics of power grids is one of the problems that can be
studied through complex networks. The North American Electric Reliability Corporation
(NERC) defines a cascading failure as the uncontrolled successive loss of system elements
triggered by an incident at any location.
In this dissertation, we primarily discuss the dynamics of cascading failures in the power
transmission grid, from a complex networks perspective, and propose possible solutions for
mitigating their effects. We evaluate the grid dynamics for two specific scenarios, load
growth and random
fluctuations in the grid, to study the behavior of the grid under critical
conditions. Further, we propose three mitigation strategies for reducing the damage caused
by cascading failures. The first strategy is intentional islanding in the power transmission
grid. The aim of this method is to intentionally split the grid into two or more separate self-
sustaining components such that the initial failure is isolated and the separated components
can function independently, with minimum load shedding. The second mitigation strategy
involves controlled placement of distributed generation (DG) in the transmission system in
order to enhance robustness of the grid. The third strategy requires the addition of a link in
the transmission grid by reduction of the average spectral distance, utilizing the Ybus matrix
of the grid and a novel algorithm.
Through this dissertation, we aim to successfully cover the gap present in the complex networks domain, with respect to the vulnerability analysis of power grid networks.
|
17 |
Regional assessment of short-term impacts of corn stover removal for bioenergy on soil quality and crop productionKenney, Ian T. January 1900 (has links)
Master of Science / Department of Agronomy / Humberto Blanco / DeAnn Presley / The U.S. agricultural sector is in a prime position to provide crop residues such as corn (Zea mays L.) stover as feedstock for large-scale bioenergy production. While producing renewable energy from biomass resources is a worthy initiative, excessive removal of corn stover from agricultural fields has the potential to increase soil erosion, degrade soil properties, and reduce corn yields. A need exists to objectively assess stover removal impacts on agriculture and the environment on regional scales. This project assessed the effects of removing various rates of corn stover on runoff and erosion and changes in soil physical properties and corn yields on a regional scale across three soils at Colby, Hugoton, and Ottawa in Kansas, USA. The soils were Ulysses silt loam (Fine-silty, mixed, superactive, mesic Aridic Haplustolls) at Colby, Hugoton loam (Fine-silty, mixed, superactive, mesic Aridic Argiustolls) at Hugoton, and Woodson silt loam (Fine, smectitic, thermic Abruptic Argiaquolls) at Ottawa, all with slopes [less than or equal to] 1%. Five stover treatments were studied that consisted of removing 0, 25, 50, 75, and 100% of stover after harvest from no-till and strip-till continuous corn plots. Simulated rainfall was applied in spring 2010 at rates representing 5 yr return intervals at each site and included a dry and wet run. Runoff increased with an increase in stover removal at Colby and Hugoton, but not at Ottawa. At Colby, stover removal rates as low as 25% caused runoff to occur 16 min sooner and increased sediment loss. At this site, runoff and sediment-carbon (C) loss increased as removal rates exceeded 25%. At Hugoton, complete stover removal increased loss by total N by 0.34, total P loss by 0.07, PO[subscript]4-P by 0.003 and NO[subscript]3-N by 0.007 kg ha-[superscript]1. At Ottawa, PO[subscript]4-P loss decreased by 0.001 kg ha-[superscript]1 with 25% removal and by 0.003 kg ha-[superscript]1 with 50% removal. Mean weight diameter (MWD) of wet aggregates decreased with an increase in stover removal on all soils. At Ottawa, stover removal at 75% reduced soil C in the top 5 cm by 1.57 Mg ha-[superscript]1. Soil volumetric water content decreased with stover removal at Colby and Ottawa, but was variable at Hugoton. Soil temperature tended to increase with stover removal during summer months and decrease during winter months. Soil temperature also fluctuated much more widely with stover removal, resulting in more freeze-thaw events compared to no stover removal. No effect of stover removal on soil water retention was observed on any of the soils. In 2009, removal rates [greater than or equal to]50% resulted in greater grain yield at Colby, while removal rates [greater than or equal to]75% resulted in greater grain yields at Ottawa in 2009 and 2010. Results from the first two years of stover management suggest that stover removal at rates above 25% for bioenergy production increased water erosion, degraded soil structural properties, and altered soil water and temperature regimes. Higher rates of removal ([greater than or equal to]75%) can also reduce soil C concentration in the short-term in rainfed regions. However, grain yields may be enhanced by stover removal from irrigated soils and from rainfed soils with adequate moisture. Overall, the increase in water erosion and alteration in soil properties in the short-term suggest that stover removal can detrimentally affect water quality and soil productivity in Kansas. Further long-term monitoring is warranted to conclusively discern stover removal implications.
|
18 |
Hydrothermal conversion of lignocellulosic biomass to bio-oilsGan, Jing January 1900 (has links)
Doctor of Philosophy / Department of Biological and Agricultural Engineering / Wenqiao Yuan / Donghai Wang / Corncobs were used as the feedstock to investigate the effect of operating conditions and crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, 0.5% catalyst loading. At selected conditions, bio-oil yield based on the total weight of corn cobs and crude glycerol increased to 36.3% as the crude glycerol/corn cobs ratio increased to 5. Furthermore, the optimization of operating conditions was conducted via response surface methodology. A maximum bio-oil yield of 41.3% was obtained at 280°C, 12min, 21% biomass content, and 1.56% catalyst loading. A highest bio-oil carbon content of 74.8% was produced at 340°C with 9% biomass content. A maximum carbon recovery of 25.2% was observed at 280°C, 12min, 21% biomass content, and 1.03% catalyst loading.
The effect of biomass ecotype and planting location on bio-oil production were studied on big bluestems. Significant differences were found in the yield and elemental composition of bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also had the highest carbon and lowest oxygen contents, which were not affected by the planting location.
In order to better understand the mechanisms of hydrothermal conversion, the interaction effects between cellulose, hemicellulose and lignin in hydrothermal conversion were studied. Positive interaction between cellulose and lignin, but negative interaction between cellulose and hemicellulose were observed. No significant interaction was found between hemicelluose and lignin. Hydrothermal conversion of corncobs, big bluestems, switchgrass, cherry, pecan, pine, hazelnut shell, and their model biomass also were conducted. Bio-oil yield increased as real biomass cellulose and hemicellulose content increased, but an opposite trend was observed for low lignin content model biomass.
|
19 |
The effect of biomass, operating conditions, and gasifier design on the performance of an updraft biomass gasifierJames Rivas, Arthur Mc Carty January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Wenqiao Yuan / Gasification is an efficient way to produce energy from biomass, which has significant positive impacts on the environment, domestic economy, national energy security, and the society in general. In this study, a lab-scale updraft biomass gasifier was designed, built, and instrumented for stable gasification using low-bulk density biomass. Related accessories, such as a biomass feeder, inlet air temperature controller, air injection nozzle, and tar cracking system, were also developed to enhance gasifier performance.
The effect of operation parameters on gasifier performance was studied. Two operational parameters, including air flow rate and feed-air temperature, were studied on three sources of biomass: prairie hay, sorghum biomass, and wood chips. Results showed that higher air flow rate increased tar contents in syngas for all three types. It was also found that different biomasses gave significantly different tar contents, in the order of wood chips>sorghum biomass>prairie hay. Feed-air temperature did not have a significant effect on tar content in syngas except for prairie hay, where higher feed air temperature reduced tar. A statistical model was implemented to study differences on syngas composition. Results showed that different biomasses produced syngas with different high heating value, e.g., wood chips > prairie hay > sorghum biomass. CO composition also showed differences by feed air temperature and biomass, e.g. prairie hay>wood chips>sorghum biomass, but H[subscript]2 did not show significant differences by either biomass type or operating conditions.
Moreover, because of the downstream problems caused by tars in syngas such as tar condensation in pipelines, blockage and machinery collapse, an in-situ tar cracking system was developed to remove tars in syngas. The tar cracking device was built in the middle of the gasifier’s combustion using gasification heat to drive the reactions. The in-situ system was found to be very effective in tar removal and syngas enhancement. The highest tar removal of 95% was achieved at 0.3s residence time and 10% nickel loading. This condition also gave the highest syngas HHV increment of 36% (7.33 MJ/m[superscript]3). The effect of gas residence time and Ni loading on tar removal and syngas composition was also studied. Gas residence of 0.2-0.3s and Ni loading of 10% were found appropriate in this study.
|
20 |
A New Technology for the Anaerobic Digestion of Organic WasteGuilford, Nigel 19 January 2010 (has links)
The development and patenting of a new technology for the anaerobic digestion of solid waste is described. The design basis is explained and justified by extensive reference to the literature. The technology was specifically designed to be versatile, robust and affordable and is directly derived from other proven processes for organic waste management. The ways in which environmental regulations directly affect the development and commercialization of organic waste processing technologies are described. The great differences in regulations between Europe and North America are analyzed to explain why anaerobic digestion is common in Europe and rare in North America and why this is the result of waste management economics which are driven by these regulations. The new technology is shown to be competitive in the Province of Ontario in particular and North America in general; a detailed financial analysis and comparison with European technologies is provided in support of this conclusion.
|
Page generated in 0.0289 seconds