• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ingénierie de trafic avec conscience d'énergie dans les réseaux filaires / Energy aware traffic engineering in wired communication networks

Bianzino, Aruna Prem 04 May 2012 (has links)
Que le phénomène découle d’une prise de conscience des conséquences sur l’environnement, d’une opportunité économique ou d’une question de réputation et de commerce, la réduction des émissions de gaz à effets de serre est récemment devenue un objectif de premier plan. Les individus, les entreprises et les gouvernements effectuent un effort important pour réduire la dépense énergétique de multiples secteurs d’activité. Parallèlement, les technologies de l’information et de la communication sont de plus en plus présentes dans la plupart des activités humaines et l’on a estimé que 2% des émissions de gaz à effets de serre pouvaient leur être attribuées, cette proportion atteignant 10 % dans les pays fortement industrialisés [1, 2]. Si ces chiffres paraissent raisonnables aujourd’hui, ils sont certainement appelés à croître à l’avenir. À l’heure du cloud computing, les infrastructures de calcul et de communication demandent de plus en plus de performance et de disponibilité et imposent l’utilisation de matériels puissants et engendrant une consommation d’énergie importante du fait de leur fonctionnement direct, mais aussi à cause du refroidissement qu’ils nécessitent. En outre, les contraintes de disponibilité imposent une conception d’architectures redondantes et dimensionnées sur une charge crête. Les infrastructures sont donc souvent sous-utilisées et adapter leur niveau de performance à la charge effectivement constatée constitue une piste d’optimisation prometteuse à divers niveaux. Si l’on adopte un strict point de vue environnemental, l’objectif du Green Networking consiste à réduire le volume d’émissions de gaz à effets de serre dues au processus de communication. L’utilisation de sources d’énergie renouvelables ou d’électronique de faible consommation (par exemple asynchrone) constituent des pistes évidentes d’amélioration. / The reduction of power consumption in communication networks has become a key issue for both the Internet Service Providers (ISP) and the research community. Ac- cording to different studies, the power consumption of Information and Communication Technologies (ICT) varies from 2% to 10% of the worldwide power consumption [1, 2]. Moreover, the expected trends for the future predict a notably increase of the ICT power consumption, doubling its value by 2020 [2] and growing to around 30% of the worldwide electricity demand by 2030 according to business-as-usual evaluation scenarios [15]. It is therefore not surprising that researchers, manufacturers and network providers are spending significant efforts to reduce the power consumption of ICT systems from dif- ferent angles. To this extent, networking devices waste a considerable amount of power. In partic- ular, their power consumption has always been increased in the last years, coupled with the increase of the offered performance [16]. Actually, power consumption of network- ing devices scales with the installed capacity, rather than the current load [17]. Thus, for an ISP the network power consumption is practically constant, unrespectively to traffic fluctuations. However, actual traffic is subject to strong day/night oscillations [3]. Thus, many devices are underutilized, especially during off-peak hours when traffic is low. This represents a clear opportunity for saving energy, since many resources (i.e., routers and links) are powered on without being fully utilized. In this context, resource consolidation is a known paradigm for the reduction of the power consumption. It consists in having a carefully selected subset of network devices entering a low power state, and use the rest to transport the required amountof traffic.
2

A testbed implementation of energy efficient wireless sensor network routing protocols / Joubert George Jacobus Krige

Krige, Joubert George Jacobus January 2014 (has links)
Wireless Sensor Networks (WSNs) consist of Sensor Nodes (SNs) spatially removed from one another, that can monitor a variety of environmental conditions. SNs then collaboratively communicate the collected information to a central location, by passing along the data in a multi-hop fashion. SN energy resources are limited and energy monitoring and preservation in WSNs are therefore very important. Since multi-hop communication takes place, the routing protocol used may have a significant effect on the balanced use and preservation of energy in the WSN. A significant amount of research has been performed on energy efficient routing in WSNs, but the majority of these studies were only implemented in simulation. The simulation engines used to perform these studies do not take into account all of the relevant environmental factors affecting energy efficiency. In order to comment on the feasibility of a routing protocol meant to improve the energy efficiency of a WSN, it is important to test the routing scheme in a realistic environment. In this study, a SN specifically designed to be used in an energy consumption ascertaining WSN testbed was developed. This SN has a unique set of features which makes it ideal for this application. Each SN is capable of recording its own power consumption. The design also features a lithium battery charging circuit which improves the reusability of the SN. Each node has a detachable sensor module and transceiver module which enables the researcher to conduct experiments using various transceivers and sensors. Twenty of these SNs were then used to form an energy consumption ascertaining WSN testbed. This testbed was used to compare the energy consumption of a Minimum Total Transmission Power Routing (MTTPR) scheme to a shortest hop path routing scheme. The results show that each SN’s transmission power setting dependant efficiency has a significant effect on the overall performance of the MTTPR scheme. The MTTPR scheme might in some cases use more energy than a shortest hop path routing scheme because the transmission power setting dependant efficiency of the transceiver is not taken into account. The MTTPR scheme as well as other similar routing schemes can be improved by taking the transceiver efficiency at different transmission power settings into account. Simulation environments used to evaluate these routing schemes can also be improved by considering the transceiver efficiency at different transmission power settings. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2014
3

A testbed implementation of energy efficient wireless sensor network routing protocols / Joubert George Jacobus Krige

Krige, Joubert George Jacobus January 2014 (has links)
Wireless Sensor Networks (WSNs) consist of Sensor Nodes (SNs) spatially removed from one another, that can monitor a variety of environmental conditions. SNs then collaboratively communicate the collected information to a central location, by passing along the data in a multi-hop fashion. SN energy resources are limited and energy monitoring and preservation in WSNs are therefore very important. Since multi-hop communication takes place, the routing protocol used may have a significant effect on the balanced use and preservation of energy in the WSN. A significant amount of research has been performed on energy efficient routing in WSNs, but the majority of these studies were only implemented in simulation. The simulation engines used to perform these studies do not take into account all of the relevant environmental factors affecting energy efficiency. In order to comment on the feasibility of a routing protocol meant to improve the energy efficiency of a WSN, it is important to test the routing scheme in a realistic environment. In this study, a SN specifically designed to be used in an energy consumption ascertaining WSN testbed was developed. This SN has a unique set of features which makes it ideal for this application. Each SN is capable of recording its own power consumption. The design also features a lithium battery charging circuit which improves the reusability of the SN. Each node has a detachable sensor module and transceiver module which enables the researcher to conduct experiments using various transceivers and sensors. Twenty of these SNs were then used to form an energy consumption ascertaining WSN testbed. This testbed was used to compare the energy consumption of a Minimum Total Transmission Power Routing (MTTPR) scheme to a shortest hop path routing scheme. The results show that each SN’s transmission power setting dependant efficiency has a significant effect on the overall performance of the MTTPR scheme. The MTTPR scheme might in some cases use more energy than a shortest hop path routing scheme because the transmission power setting dependant efficiency of the transceiver is not taken into account. The MTTPR scheme as well as other similar routing schemes can be improved by taking the transceiver efficiency at different transmission power settings into account. Simulation environments used to evaluate these routing schemes can also be improved by considering the transceiver efficiency at different transmission power settings. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2014
4

Reliable on-demand routing protocols for mobile ad-hoc networks

Khan, Shariq Mahmood January 2015 (has links)
Mobile Ad-Hoc Network (MANET) facilitates the creation of dynamic reconfigurable networks, without centralized infrastructure. MANET routing protocols have to face high challenges like link instability, node mobility, frequently changing topologies and energy consumption of node, due to these challenges routing becomes one of the core issues in MANETs. This Thesis mainly focuses on the reactive routing protocol such as Ad-Hoc On-Demand Distance Vector (AODV) routing protocol. Reliable and Efficient Reactive Routing Protocol (RERRP) for MANET has been proposed to reduce the link breakages between the moving nodes. This scheme selects a reliable route using Reliability Factor (RF); the RF considers Route Expiration Time and Hop Count to select a routing path with high reliability and have less number of hops. The simulation result shows that RERRP outperforms AODV and enhance the packet delivery fraction (PDF) by around 6% and reduces the network routing load (NRL) by around 30%. Broadcasting in MANET could cause serious redundancy, contention, and collision of the packets. A scheme, Effective Broadcast Control Routing Protocol (EBCRP) has been proposed for the controlling of broadcast storm problem in a MANET. The EBCRP is mainly selects the reliable node while controlling the redundant re-broadcast of the route request packet. The proposed algorithm EBCRP is an on-demand routing protocol, therefore AODV route discovery mechanism was selected as the base of this scheme. The analysis of the performance of EBCRP has revealed that the EBCRP have controlled the routing overhead significantly, reduces it around 70% and enhance the packet delivery by 13% as compared to AODV. An Energy Sensible and Route Stability Based Routing Protocol (ESRSBR) have also been proposed that mainly focuses on increasing the network lifetime with better packet delivery. The ESRSBR supports those nodes to participate in the data transfer that have more residual energy related to their neighbour nodes. The proposed protocol also keeps track of the stability of the links between the nodes. Finally, the ESRSBR selects those routes which consist of nodes that have more residual energy and have stable links. The comparative analysis of ESRSBR with AODV and recently proposed routing protocol called Link Stability and Energy Aware (LSEA) routing protocol revealed that the proposed protocol ESRSBR has a significantly affect the network lifetime, increases it around 10% and 13% as compared to LSEA and AODV protocols respectively. The ESRSBR also decreases the routing overhead by 22% over LSEA and by 38% over AODV.
5

Réseaux pilotés par logiciels efficaces en énergie / Energy efficient software defined networks

Huin, Nicolas 28 September 2017 (has links)
Au cours des dernières années, la croissance des architectures de réseaux de télécommunication a rapidement augmenté pour suivre un trafic en plein essor. En outre, leur consommation d'énergie est devenue un enjeu Important, tant pour son impact économique qu'écologique. De multiples approches ont été proposées pour la réduire. Dans cette thèse, nous nous concentrons sur l'approche Energy Aware Routing (EAR) qui consiste à fournir un routage valide tout en diminuant le nombre d'équipements réseau actifs. Cependant, les réseaux actuels ne sont pas adaptés au déploiement de politiques vertes globales en raison de leur gestion distribuée et de la nature fermée des périphériques réseau actuels. Les paradigmes de Software Defined Network (SDN) et de Network Function Virtualization (NFV) promettent de faciliter le déploiement de politiques vertes. En effet, le premier sépare le plan de contrôle et de données et offre donc une gestion centralisée du réseau. Le second propose de découpler le logiciel et le matériel des fonctions réseau et permet une plus grande flexibilité dans la création et la gestion des services réseau. Dans cette thèse, nous nous concentrons sur les défis posés par ces paradigmes pour le déploiement de politiques EAR. Nous consacrons les deux premières parties aux SDNs. Nous étudions d'abord les contraintes de taille de table de routage causées par la complexité accrue des règles, puis le déploiement progressif de périphériques SDN dans un réseau actuel. Nous concentrons notre attention sur NFV dans la dernière partie, et plus particulièrement nous étudions les chaines de fonctions de services. / In the recent years, the growth of the architecture of telecommunication networks has been quickly increasing to keep up with a booming traffic. Moreover, the energy consumption of these infrastructures is becoming a growing issue, both for its economic and ecological impact. Multiple approaches were proposed to reduce the networks' power consumption such as decreasing the number of active elements. Indeed, networks are designed to handle high traffic, e.g., during the day, but are over-provisioned during the night. In this thesis, we focus on disabling links and routers inside the network while keeping a valid routing. This approach is known as Energy Aware Routing (EAR). However current networks are not adapted to support the deployment of network-wide green policies due to their distributed management and the black-box nature of current network devices. The SDN and NFV paradigms bear the promise of bringing green policies to reality. The first one decouples the control and data plane and thus enable a centralized control of the network. The second one proposes to decouple the software and hardware of network functions and allows more flexibility in the creation and management of network services. In this thesis, we focus on the challenges brought by these two paradigms for the deployment of EAR policies. We dedicated the first two parts to the SDN paradigm. We first study the forwarding table size constraints due to an Increased complexity of rules. We then study the progressive deployment of SDN devices alongside legacy ones. We focus our attention on the NFV paradigm in the last part, and more particularly, we study the Service Function Chaining problem.
6

Conception et gestion de réseaux efficaces en énergie / Design and management of networks with low power consumption

Phan, Truong Khoa 25 September 2014 (has links)
Dans cette thèse, nous étudions plusieurs modèles de routage efficaces en énergie. Pour chaque modèle, nous présentons une formulation en programmation linéaire mixte permettant de trouver une solution exacte. En outre, comme il s’agit de problèmes NP-Difficiles, nous proposons des heuristiques efficaces pour des réseaux de grande taille. Dans la première partie de cette thèse, nous étudions une solution de routage efficace en énergie dans laquelle nous ajoutons la possibilité d’éliminer des redondances dans les paquets transmis sur le réseau. Nous montrons premièrement que l’ajout de l’élimination des redondances permet d’améliorer l’efficacité énergétique des réseaux en éteignant plus de liens. Ensuite, nous étendons le modèle afin qu’il prenne en compte un certain niveau d’incertitudes dans le volume de trafic et le taux de redondances. La deuxième partie de cette thèse est consacrée aux problèmes qui se posent lors du déploiement de tels protocoles dans les réseaux. Plus particulièrement, nous proposons de minimiser les changements entre deux configurations réseaux consécutives lorsque plusieurs matrices de trafic sont considérées. Le routage des demandes étant alors assuré avec le protocole de routage OSPF (Open Shortest Path First). Ensuite, nous abordons le problème de la limitation du nombre de règles de routage dans les routeurs en utilisant une technologie de type SDN (Software Defined Networks). Enfin, nous présentons en annexe des travaux complémentaires réalisés au cours de cette thèse concernant le routage multicast et le contrôle de congestion TCP. / In this thesis, we study several models of energy-Aware routing. For each model, we present a linear programming formulation to find the exact solution. Moreover, since energy-Aware routing is NP-Hard problem, we also propose efficient heuristic algorithms for large scale networks. In the first part of this thesis, we deal with GreenRE - a new energy-Aware routing model with the support of redundancy elimination. We first present a deterministic model in which we show how to combine energy-Aware routing and redundancy elimination to improve energy efficiency for backbone networks. Then, we extend the model in order to take into account uncertainties in traffic volumes and redundancy rates. The second part of this thesis is devoted to the deployment issues of energy- aware routing in practice. In detail, to avoid service deterioration for end-Users, we limit changes of network configurations in multi-Period traffic matrices in Open Shortest Path First (OSPF) protocol. Next, we address the problem of limited rule space in OpenFlow switches when installing energy-Aware routing configurations. Finally, we present in the appendix other works developed during this thesis: multicast network protocol and TCP congestion control algorithm.
7

Generic Architecture for Power-Aware Routing in Wireless Sensor Networks

Ranjan, Rishi 18 June 2004 (has links)
This work describes the design and implementation of a generic architecture to provide a collective solution for power-aware routing to a wide range of problems in wireless sensor network environments. Power aware-routing is integral to the proposed solutions for different problems. These solutions try to achieve power-efficient routing specific to the problem domain. This can lead to challenging technical problems and deployment barriers when attempting to integrate the solutions. This work extracts various factors to be considered for a range of problems in wireless sensor networks and provides a generic framework for efficient power-aware routing. The architecture aims to relieve researchers from considering power management in their design. We have identified coupling between sources and sinks as the main factor for different design choices for a range of problems. We developed a core-based hierarchical routing framework for efficient power-aware routing that is used to decouple the sources from sinks. The architecture uses only local interaction for scalability and stability in a dynamic network. The architecture provides core-based query forwarding and data dissemination. It uses data aggregation and query aggregation at core nodes to reduce the amount of data to be transmitted. The architecture can be easily extended to incorporate protocols to provide QoS and security to the applications. We use network simulations to evaluate the performance of cluster formation and energy efficiency of the algorithm. Our results show that energy efficiency of the algorithm is better when the transmission range is kept to a minimum for network connectivity as compared to adjustable transmission range.
8

Energy-aware routing protocols in Wireless Sensor Networks

Abusaimeh, Hesham January 2009 (has links)
Saving energy and increasing network lifetime are significant challenges in the field of Wireless Sensor Networks (WSNs). Energy-aware routing protocols have been introduced for WSNs to overcome limitations of WSN including limited power resources and difficulties renewing or recharging sensor nodes batteries. Furthermore, the potentially inhospitable environments of sensor locations, in some applications, such as the bottom of the ocean, or inside tornados also have to be considered. ZigBee is one of the latest communication standards designed for WSNs based on the IEEE 802.15.4 standard. The ZigBee standard supports two routing protocols, the Ad hoc On-demand Distance Vector (AODV), and the cluster-tree routing protocols. These protocols are implemented to establish the network, form clusters, and transfer data between the nodes. The AODV and the cluster-tree routing protocols are two of the most efficient routing protocols in terms of reducing the control message overhead, reducing the bandwidth usage in the network, and reducing the power consumption of wireless sensor nodes compared to other routing protocols. However, neither of these protocols considers the energy level or the energy consumption rate of the wireless sensor nodes during the establishment or routing processes.
9

Optimisation du routage dans les réseaux de capteurs pour les applications temps-réel / Routing optimization in wireless sensor netwoks for real-time applications

Aissani, Mohamed 13 March 2011 (has links)
La résolution du problème des vides dans le routage géographique dédié aux réseaux de capteurs sans fil (RCS), rencontrés lors de la remontée des informations vers les nœuds collecteurs à partir des nœuds du réseau, constitue un verrou technologique qui reste un problème ouvert encore aujourd'hui. Cette thèse, contrairement aux méthodes traditionnelles, propose une nouvelle approche pour la prise en charge de ces vides tout en optimisant l'efficacité énergétique des nœuds déployés dans un RCS faisant ainsi du routage proposé une solution adéquate pour l'acheminement des informations en temps réel. Celui-ci se base sur l'information géographique concernant le nœud courant, les vides voisins et le nœud destinataire du paquet. Notre proposition agit aussi sur des mécanismes assurant la découverte, l'annonce et la maintenance des vides d'un RCS. Le premier protocole proposé, appelé VT-SPEED, est construit sur la base d'une fonction évolutive intégrant un mécanisme d'évitement adaptatif des vides et considérant simultanément la charge des nœuds candidats au routage et leur information géographique de localisation. Afin d'optimiser l'efficacité énergétique de VT-SPEED, notre proposition inclut par ailleurs de nouvelles routines sur la base de fonctions paramétriques pour la prise en compte de l'énergie dans le routage : (a) suppression des paquets retardés sur la base de leur échéance et (b) équilibrage de charge dans le choix des sauts des paquets. Les résultats enregistrés par le protocole résultant, appelé VE-SPEED, montrent que l'approche proposée prend en compte les flux de type temps-réel, possède une grande tolérance aux vides, conserve mieux l'énergie des nœuds de bordure, assure un meilleur équilibrage de charge, et consomme de manière optimisée l'énergie des nœuds capteurs / Resolution of the void-problem in geographical routing in Wireless Sensor Networks (WSN) is an open problem and it can be considered as key issue in disseminating data from sensor nodes to sinks. In this thesis, unlike previously-proposed methods, we address this problem in a different manner by proposing a novel approach to handle both voids and real-time flows with optimizing energy-efficiency of deployed nodes in a WSN. The proposed approach is based on the geographic information of the current node, of the neighbor voids and of the sink. Our proposal relies on the mechanisms that discover voids, announce them and then maintain them. The first proposed protocol, called VT-SPEED, is based on an adaptive void-avoidance mechanism that considers both load of routing candidate nodes and their localization information. To make VT-SPEED energy-aware, we also propose new routines based on parameterized functions that handle routing dissipation energy : (a) dropping out-of-order packets and (b) load-balancing when choosing next hop of packets. The resulting protocol, called VE-SPEED, has satisfactory results which show that the proposed approach satisfies the real-time constraints of data flows, tolerates voids, preserves energy resources of boundary nodes, balances load between nodes and has optimal energy consumption

Page generated in 0.0542 seconds