• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energetics in Canoe Sprint

Li, Yongming 11 May 2015 (has links) (PDF)
This study reviewed first the development of race result in canoe sprint during the past decades. The race results of MK1-1000 and WK1-500 have increased 32.5 % and 42.1 %, respectively, a corresponding 5.0 % and 6.5 % increase in each decade. The development of race results in canoe sprint during the past decades resulted from the contributions of various aspects. The recruitment of taller and stronger athletes improved the physiological capacity of paddlers. Direct investigation on energy contribution in canoe sprint enhanced the emphasis on aerobic capacity and aerobic endurance training. Advancement of equipment design improved the efficiency of paddling. Physiological and biomechanical diagnostics in canoe sprint led to a more scientific way of training. Additionally, other aspects might also have contributed to the development of race results during the past decades. For example, the establishment of national team after World War II provided the possibility of systematic training, and the use of drugs in the last century accelerated the development of race results in that period. Recent investigations on energetics in high-intensity exercises demonstrated an underestimate of WAER % in the table provided by some textbooks since the 1960s. An exponential correlation between WAER % and the duration of high-intensity exercises was concluded from summarizing most of the relevant reports, including reports with different methods of energy calculation. However, when reports with the MAOD and Pcr-La-O2 methods were summarized separately, a greater overestimate of WAER % from MAOD was found compared to those from Pcr-La-O2, which was in line with the critical reports on MAOD. Because of the lack of investigation of the validity of the comparisons between MAOD and Pcr-La-O2, it is still not clear which method can generate more accurate results and which method is more reliable. With regard to kayaking, a range of variation in WAER % was observed. Many factors might contribute to the variation of WAER % in kayaking. Therefore, the methods utilized to calculate the energy contributions, different paddling conditions, and the level of performance were investigated in kayaking. The findings indicated that the method utilized to calculate the energy contributions in kayaking, rather than paddling condition and performance level of paddlers, might be the possible factor associated with WAER %. Some other possible factors associated with WAER % still need to be further investigated in the future. After verifying the dependence of WAER % on the method of energy calculation, but not on paddling condition and performance level of paddlers, energy contributions of kayaking were investigated for the three racing distances on a kayak ergometer with junior paddlers. Energetic profiles in kayaking varied with paddling distances. At 500 m and 1000 m the aerobic system was dominant (with WAER % of 57.8 % and 76.2 %), whereas at 200 m the anaerobic system was dominant (with WAER % of 31.1-32.4 %). Muscular volume seemed to have an influence on absolute energy productions. The anaerobic alactic system determined the performance during the first 5 to 10 s. The anaerobic lactic system probably played a dominant role during the period from the 5th-10th s to 30th-40th s. The aerobic system could dominate the energy contribution after 30–40 s. This energetic profile in kayaking could provide physiological support for developing the training philosophy in these three distances. Additionally, the method introduced by Beneke et al. seemed to be a valid method to calculate the energy contributions in maximal kayaking. Energy contributions in canoeing were similar to those in kayaking. The relative energy contributions on open water canoeing were 75.3 ± 2.8 % of aerobic, 11.5 ± 1.9 % of anaerobic lactic, and 13.2 ± 1.9 % of anaerobic alactic at maximal speed of simulated 1000 m. Further, the C of canoeing seemed also to be similar to the reported findings in kayaking, with a function of y = 0.0242 * x2.1225. Training programs could be designed similarly for kayaking and canoeing with regard to energetic profile. In order to extend the findings on energetics in canoe sprint to other exercises, energy contributions in kayaking, canoeing, running, cycling, as well as arm cranking were compared with the same duration. Results indicated that WAER % during maximal exercises with the same duration seemed to be independent of movement patterns, given similar VO2 kinetics during the maximal exertion. The exponential relationship between WAER % and duration in maximal exercises could be supported by excluding the influence from movement patterns. Additionally, MLSS in kayaking was investigated. The blood lactate value of MLSS was found to be 5.4 mM in kayaking, which could expand the knowledge of MLSS in different locomotion. The MLSS in kayaking might be attributed to the involved muscle mass in this locomotion, which could result in a certain level of lactate removal, and allow a certain level of equilibrium between lactate production and removal. LT5, instead of LT4, was recommended for diagnostics in kayaking, given an incremental test as used in this study.
2

Energetics in Canoe Sprint

Li, Yongming 10 February 2015 (has links)
This study reviewed first the development of race result in canoe sprint during the past decades. The race results of MK1-1000 and WK1-500 have increased 32.5 % and 42.1 %, respectively, a corresponding 5.0 % and 6.5 % increase in each decade. The development of race results in canoe sprint during the past decades resulted from the contributions of various aspects. The recruitment of taller and stronger athletes improved the physiological capacity of paddlers. Direct investigation on energy contribution in canoe sprint enhanced the emphasis on aerobic capacity and aerobic endurance training. Advancement of equipment design improved the efficiency of paddling. Physiological and biomechanical diagnostics in canoe sprint led to a more scientific way of training. Additionally, other aspects might also have contributed to the development of race results during the past decades. For example, the establishment of national team after World War II provided the possibility of systematic training, and the use of drugs in the last century accelerated the development of race results in that period. Recent investigations on energetics in high-intensity exercises demonstrated an underestimate of WAER % in the table provided by some textbooks since the 1960s. An exponential correlation between WAER % and the duration of high-intensity exercises was concluded from summarizing most of the relevant reports, including reports with different methods of energy calculation. However, when reports with the MAOD and Pcr-La-O2 methods were summarized separately, a greater overestimate of WAER % from MAOD was found compared to those from Pcr-La-O2, which was in line with the critical reports on MAOD. Because of the lack of investigation of the validity of the comparisons between MAOD and Pcr-La-O2, it is still not clear which method can generate more accurate results and which method is more reliable. With regard to kayaking, a range of variation in WAER % was observed. Many factors might contribute to the variation of WAER % in kayaking. Therefore, the methods utilized to calculate the energy contributions, different paddling conditions, and the level of performance were investigated in kayaking. The findings indicated that the method utilized to calculate the energy contributions in kayaking, rather than paddling condition and performance level of paddlers, might be the possible factor associated with WAER %. Some other possible factors associated with WAER % still need to be further investigated in the future. After verifying the dependence of WAER % on the method of energy calculation, but not on paddling condition and performance level of paddlers, energy contributions of kayaking were investigated for the three racing distances on a kayak ergometer with junior paddlers. Energetic profiles in kayaking varied with paddling distances. At 500 m and 1000 m the aerobic system was dominant (with WAER % of 57.8 % and 76.2 %), whereas at 200 m the anaerobic system was dominant (with WAER % of 31.1-32.4 %). Muscular volume seemed to have an influence on absolute energy productions. The anaerobic alactic system determined the performance during the first 5 to 10 s. The anaerobic lactic system probably played a dominant role during the period from the 5th-10th s to 30th-40th s. The aerobic system could dominate the energy contribution after 30–40 s. This energetic profile in kayaking could provide physiological support for developing the training philosophy in these three distances. Additionally, the method introduced by Beneke et al. seemed to be a valid method to calculate the energy contributions in maximal kayaking. Energy contributions in canoeing were similar to those in kayaking. The relative energy contributions on open water canoeing were 75.3 ± 2.8 % of aerobic, 11.5 ± 1.9 % of anaerobic lactic, and 13.2 ± 1.9 % of anaerobic alactic at maximal speed of simulated 1000 m. Further, the C of canoeing seemed also to be similar to the reported findings in kayaking, with a function of y = 0.0242 * x2.1225. Training programs could be designed similarly for kayaking and canoeing with regard to energetic profile. In order to extend the findings on energetics in canoe sprint to other exercises, energy contributions in kayaking, canoeing, running, cycling, as well as arm cranking were compared with the same duration. Results indicated that WAER % during maximal exercises with the same duration seemed to be independent of movement patterns, given similar VO2 kinetics during the maximal exertion. The exponential relationship between WAER % and duration in maximal exercises could be supported by excluding the influence from movement patterns. Additionally, MLSS in kayaking was investigated. The blood lactate value of MLSS was found to be 5.4 mM in kayaking, which could expand the knowledge of MLSS in different locomotion. The MLSS in kayaking might be attributed to the involved muscle mass in this locomotion, which could result in a certain level of lactate removal, and allow a certain level of equilibrium between lactate production and removal. LT5, instead of LT4, was recommended for diagnostics in kayaking, given an incremental test as used in this study.
3

Efeito da cafeína no desempenho e na fadiga central e periférica em diferentes modelos de exercício aeróbio de alta intensidade / Caffeine effect on performance and central and peripheral fatigue in different models of high- intensity aerobic exercise

Couto, Patrícia Guimarães 18 May 2017 (has links)
A presente tese investigou o efeito da ingestão de cafeína no desempenho no ciclismo, no recrutamento muscular, na contribuição energética, no lactato sanguíneo, nas respostas fisiológicas e perceptivas e no desenvolvimento de fadiga central e periférica em diferentes modelos de exercício aeróbio de alta intensidade. Nove ciclistas do sexo masculino (32,3 ± 6,0 anos de idade, 79,3 ± 6,8 kg, 181,2 ± 7,9 cm e VO2máx 55,2 ± 5,7 mL.kg-1.min-1) completaram 11 sessões experimentais. Os participantes foram submetidos a testes contrarrelógio de 4.000 m, testes com carga constante até a exaustão realizados na potência média do contrarrelógio (313 ± 41 W e 100 ± 10 rpm), e ainda testes com carga constante com tempo fixo correspondente a 60% do tempo sustentado no teste de carga constante até a exaustão (237,2 ± 56,0 s). Os participantes ingeriram cápsulas contendo placebo ou cafeína (5 mg.kg-1 de massa corporal) 60 minutos antes da realização dos testes, em ordem contrabalançada e em um modelo duplo-cego. Respostas cardiorrespiratórias e perceptivas foram mensuradas durante os testes. Lactato sanguíneo foi coletado antes e após o exercício. Avaliações neuromusculares foram realizadas através de estimulação elétrica no nervo femoral nos momentos Baseline (previamente à ingestão da cápsula), Pré-EX (uma hora após a ingestão, antes do exercício), e Pós-EX (2 min após o exercício). A ingestão de 5 mg.kg-1 de cafeína melhorou o desempenho no teste contrarrelógio de 4.000 m de ciclismo (-6,9 ± 7,4 s; p = 0,024), devido a um aumento na contribuição anaeróbia. O desempenho no teste com carga constante até a exaustão também foi melhor após a ingestão de cafeína (+134,3 ± 81,5 s; p = 0,001), mas neste caso acompanhado por maior contribuição aeróbia. A ingestão de cafeína previamente a realização do exercício proporcionou efeito ergogênico no teste contrarrelógio de 4.000 m e no teste de carga constante até a exaustão, sem alterar o limiar de fadiga periférica. Entre os componentes periféricos avaliados, a taxa máxima de desenvolvimento de força reduziu significativamente menos após o teste de carga constante até a exaustão na condição cafeína, mesmo como o tempo de exercício prolongado, e também reduziu significativamente menos após o teste de carga constante e tempo fixo, o que sugere que a cafeína pode ter alterado o processo acoplamento excitação-contração, o que resultou em atraso da fadiga periférica. Além disso, no teste com carga constante até a exaustão, a disposição e a sensação de prazer foram maiores após a ingestão de cafeína, sugerindo que neste modelo de exercício estas variáveis perceptivas também podem ter contribuído para o efeito ergogênico da cafeína observado no desempenho. Em conclusão, este estudo demonstrou que a cafeína melhorara o desempenho no ciclismo em ambos os modelos de exercício aeróbio de alta intensidade, sendo no contrarrelógio devido ao aumento da quantidade total de energia anaeróbia e no carga constante até a exaustão nas variáveis perceptíveis e alteração no acoplamento excitação-contração, sem alterar o limiar de fadiga periférica / The present thesis investigated the effect of caffeine on cycling performance, muscle recruitment, energetic contribution, blood lactate, physiological and perceptual responses and the development of central and peripheral fatigue in different models of high-intensity aerobic exercises. Nine male cyclists (32.3 ± 6.0 years old, 79.3 ± 6.8 kg, 181.2 ± 7.9 cm and VO2max 55.2 ± 5.7 mL.kg-1.min-1) completed 11 experimental sessions. The participants performed 4,000 m cycling time trial, constant-load to exhaustion in the average power output of the time trial (313 ± 41 W and 100 ± 10 rpm), and also performed constant-load with fixedtime corresponding to 60% of the time sustained in the constant-load to exhaustion (237.2 ± 56.0 s). Participants ingested capsules containing placebo or caffeine (5 mg.kg-1 body weight) 60 minutes prior to the tests, in a counterbalanced order and in a double-blind model. Cardiorespiratory and perceptual responses were measured during the tests. Blood lactate was collected before and after exercises. Neuromuscular assessments were performed via electrical femoral nerve stimulation at Baseline (prior to capsule ingestion), Pre-EX (one hour after capsules ingestion, before exercise), and Post-EX (2 min after exercise). 5 mg.kg-1 of caffeine improved their performance in the 4,000 m cycling time trial (-6.9 ± 7.4 s; p = 0.024), due to an increase in anaerobic contribution. The performance in the constant-load to exhaustion was also enhanced after caffeine intake (+134.3 ± 81.5 s; p = 0.001), but in this case accompanied by greater aerobic contribution. Caffeine intake prior to cycling performance provided an ergogenic effect in the 4,000 m time trial and in the constant-load to exhaustion, without altering the critical threshold of peripheral fatigue. Among the peripheral components evaluated, the maximum rate of force development significantly reduced less after the constant-load to exhaustion in the caffeine condition, even as the prolonged exercise time, and also reduced significantly less after the constant-load with fixed-time, which suggests that caffeine may have altered the excitation-contraction coupling, which resulted in delayed peripheral fatigue. In addition, during the constant-load to exhaustion test, the felt arousal and feeling were higher after the caffeine, suggesting that in this exercise model these perceptions may also have contributed to the observed ergogenic effect of caffeine on the cycling. In conclusion, this study demonstrated that caffeine improved the cycling performance in both models of high-intensity aerobic exercise, being in the time-trial due to the increase of the total amount of anaerobic energy and the constant load until the exhaustion due to alteration in the perceptible variables and in the excitation-contraction coupling, without change the peripheral fatigue threshold
4

Efeito da cafeína no desempenho e na fadiga central e periférica em diferentes modelos de exercício aeróbio de alta intensidade / Caffeine effect on performance and central and peripheral fatigue in different models of high- intensity aerobic exercise

Patrícia Guimarães Couto 18 May 2017 (has links)
A presente tese investigou o efeito da ingestão de cafeína no desempenho no ciclismo, no recrutamento muscular, na contribuição energética, no lactato sanguíneo, nas respostas fisiológicas e perceptivas e no desenvolvimento de fadiga central e periférica em diferentes modelos de exercício aeróbio de alta intensidade. Nove ciclistas do sexo masculino (32,3 ± 6,0 anos de idade, 79,3 ± 6,8 kg, 181,2 ± 7,9 cm e VO2máx 55,2 ± 5,7 mL.kg-1.min-1) completaram 11 sessões experimentais. Os participantes foram submetidos a testes contrarrelógio de 4.000 m, testes com carga constante até a exaustão realizados na potência média do contrarrelógio (313 ± 41 W e 100 ± 10 rpm), e ainda testes com carga constante com tempo fixo correspondente a 60% do tempo sustentado no teste de carga constante até a exaustão (237,2 ± 56,0 s). Os participantes ingeriram cápsulas contendo placebo ou cafeína (5 mg.kg-1 de massa corporal) 60 minutos antes da realização dos testes, em ordem contrabalançada e em um modelo duplo-cego. Respostas cardiorrespiratórias e perceptivas foram mensuradas durante os testes. Lactato sanguíneo foi coletado antes e após o exercício. Avaliações neuromusculares foram realizadas através de estimulação elétrica no nervo femoral nos momentos Baseline (previamente à ingestão da cápsula), Pré-EX (uma hora após a ingestão, antes do exercício), e Pós-EX (2 min após o exercício). A ingestão de 5 mg.kg-1 de cafeína melhorou o desempenho no teste contrarrelógio de 4.000 m de ciclismo (-6,9 ± 7,4 s; p = 0,024), devido a um aumento na contribuição anaeróbia. O desempenho no teste com carga constante até a exaustão também foi melhor após a ingestão de cafeína (+134,3 ± 81,5 s; p = 0,001), mas neste caso acompanhado por maior contribuição aeróbia. A ingestão de cafeína previamente a realização do exercício proporcionou efeito ergogênico no teste contrarrelógio de 4.000 m e no teste de carga constante até a exaustão, sem alterar o limiar de fadiga periférica. Entre os componentes periféricos avaliados, a taxa máxima de desenvolvimento de força reduziu significativamente menos após o teste de carga constante até a exaustão na condição cafeína, mesmo como o tempo de exercício prolongado, e também reduziu significativamente menos após o teste de carga constante e tempo fixo, o que sugere que a cafeína pode ter alterado o processo acoplamento excitação-contração, o que resultou em atraso da fadiga periférica. Além disso, no teste com carga constante até a exaustão, a disposição e a sensação de prazer foram maiores após a ingestão de cafeína, sugerindo que neste modelo de exercício estas variáveis perceptivas também podem ter contribuído para o efeito ergogênico da cafeína observado no desempenho. Em conclusão, este estudo demonstrou que a cafeína melhorara o desempenho no ciclismo em ambos os modelos de exercício aeróbio de alta intensidade, sendo no contrarrelógio devido ao aumento da quantidade total de energia anaeróbia e no carga constante até a exaustão nas variáveis perceptíveis e alteração no acoplamento excitação-contração, sem alterar o limiar de fadiga periférica / The present thesis investigated the effect of caffeine on cycling performance, muscle recruitment, energetic contribution, blood lactate, physiological and perceptual responses and the development of central and peripheral fatigue in different models of high-intensity aerobic exercises. Nine male cyclists (32.3 ± 6.0 years old, 79.3 ± 6.8 kg, 181.2 ± 7.9 cm and VO2max 55.2 ± 5.7 mL.kg-1.min-1) completed 11 experimental sessions. The participants performed 4,000 m cycling time trial, constant-load to exhaustion in the average power output of the time trial (313 ± 41 W and 100 ± 10 rpm), and also performed constant-load with fixedtime corresponding to 60% of the time sustained in the constant-load to exhaustion (237.2 ± 56.0 s). Participants ingested capsules containing placebo or caffeine (5 mg.kg-1 body weight) 60 minutes prior to the tests, in a counterbalanced order and in a double-blind model. Cardiorespiratory and perceptual responses were measured during the tests. Blood lactate was collected before and after exercises. Neuromuscular assessments were performed via electrical femoral nerve stimulation at Baseline (prior to capsule ingestion), Pre-EX (one hour after capsules ingestion, before exercise), and Post-EX (2 min after exercise). 5 mg.kg-1 of caffeine improved their performance in the 4,000 m cycling time trial (-6.9 ± 7.4 s; p = 0.024), due to an increase in anaerobic contribution. The performance in the constant-load to exhaustion was also enhanced after caffeine intake (+134.3 ± 81.5 s; p = 0.001), but in this case accompanied by greater aerobic contribution. Caffeine intake prior to cycling performance provided an ergogenic effect in the 4,000 m time trial and in the constant-load to exhaustion, without altering the critical threshold of peripheral fatigue. Among the peripheral components evaluated, the maximum rate of force development significantly reduced less after the constant-load to exhaustion in the caffeine condition, even as the prolonged exercise time, and also reduced significantly less after the constant-load with fixed-time, which suggests that caffeine may have altered the excitation-contraction coupling, which resulted in delayed peripheral fatigue. In addition, during the constant-load to exhaustion test, the felt arousal and feeling were higher after the caffeine, suggesting that in this exercise model these perceptions may also have contributed to the observed ergogenic effect of caffeine on the cycling. In conclusion, this study demonstrated that caffeine improved the cycling performance in both models of high-intensity aerobic exercise, being in the time-trial due to the increase of the total amount of anaerobic energy and the constant load until the exhaustion due to alteration in the perceptible variables and in the excitation-contraction coupling, without change the peripheral fatigue threshold

Page generated in 0.1039 seconds