• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zum Einfluss der Lateralität in zyklischen Sportarten bei Nachwuchsathleten Leistungsreserve oder "unbedeutendes" Phänomen? /

Krüger, Tom. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Potsdam.
2

Differenzierte Analyse verschiedener leistungsdiagnostischer Untersuchungsmethoden zur Optimierung der Trainingsanalyse und –steuerung im Kanurennsport / Differentiated analysis of various performance diagnostic methods to optimise the analysis and regulation of the training process in kayak/canoe sprinting

Matzka, Manuel January 2023 (has links) (PDF)
Kanurennsport ist in Deutschland eine der erfolgreichsten olympischen Sommersportarten und hat mit 12 potenziellen Goldmedaillenchancen eine hohe Bedeutung für den deutschen Spitzensport. In der nationalen als auch internationalen wissenschaftlichen Forschung ist Kanurennsport jedoch bis dato unzureichend untersucht. Dabei stellt Kanurennsport als eine der wenigen vorrangig durch die Oberkörpermuskulatur angetriebenen Sportarten eine Besonderheit dar. Ein zentraler Forschungsschwerpunkt ist seit einigen Jahrzehnten die Erforschung der optimalen Verteilung der Trainingsintensität (engl. training intensity distribution; TID) für die Leistungsentwicklung von Ausdauerathlet:innen. Häufig wird die Trainingsintensität hierzu in einem Drei-Zonen-Modell kategorisiert, bei dem Zone (Z) 1 einer Intensität unterhalb der aeroben Schwelle, Z2 der Intensität zwischen der aeroben und anaeroben Schwelle und Z3 Intensitäten oberhalb der anaeroben Schwelle entspricht. Forschungsergebnisse weisen darauf hin, dass sich die TID nicht nur in Abhängigkeit von Sportart, Belastungsform, Trainingsstatus und Saisonphase unterscheidet, sondern auch in Abhängigkeit von der eingesetzten Quantifizierungsmethode (z.B. Herzfrequenz, Geschwindigkeit, Wattleistung, etc.). Für die Sportart Kanurennsport besteht bezüglich TID-Forschung großer Nachholbedarf, da bisherige Untersuchungen ausschließlich in Ausdauerportarten stattfanden, die hauptsächlich den Unterkörper (z.B. Radfahren, Laufen) oder Oberund Unterkörper (Schwimmen, Rudern) in die Vortriebsgenerierung einbinden. Bislang fehlen Informationen zu rein aus dem Oberkörper angetriebenen Sportarten. Als Grundlage für die Bestimmung der Trainingsintensitätszonen werden in Trainingspraxis und Forschung Stufentests zur Bestimmung der maximalen Sauerstoffaufnahme sowie der Leistung an der aeroben und anaeroben ventilatorisch- und/oder laktatbasierten Schwelle angewandt. Die Stufentest werden im Kanurennsport aktuell vorrangig mittels Labordiagnostik auf dem Kanu- Ergometer durchgeführt, da diese weniger stark durch die diversen Umwelteinflüsse (Wind, Wellen, Temperatur, Strömung, etc.) beeinträchtigt wird. Jedoch gibt es Hinweise, dass die Belastung auf dem Ergometer biomechanisch und physiologisch von der auf dem Wasser im Kanurennsport abweicht, sodass deren Mehrwert für die Diagnostik und die Trainingsplanung in Frage zu stellen ist. Ziel der vorliegenden kumulativen Dissertation war es (1) zu untersuchen, inwiefern eine laborbasierte Leistungsdiagnostik einer feldbasierten im Kanurennsport entspricht (Studie 1) und daraufhin die Methoden der Leistungsdiagnostik für die Studien 2 und 3 zu wählen; und (2) erste wissenschaftliche Erkenntnisse zur TID und deren Quantifizierungsmethodik in der Sportart Kanurennsport zu gewinnen (Studie 2 & 3). Diese sollten dann mit dem Wissensstand aus Sportarten, die obere und untere Extremitäten (z.B. Biathlon, Rudern) bzw. primär die unteren Extremitäten (z.B. Radsport, Laufen) für den Vortrieb einsetzen, abgeglichen werden. Zusammenfassend konnte zunächst in Studie 1 aufgrund von Unterschieden in der VO2, der Muskeloxygenierung im Musculus biceps brachii sowie im subjektiven Belastungsempfinden dargestellt werden, dass sich eine Belastung auf dem Wasser von der auf dem Ergometer unterscheidet und somit eine wasserbasierte Leistungsdiagnostik im Kanurennsport vorzuziehen ist. Die Ergebnisse aus den Studien 2 und 3 zeigten, dass die TID im Saisonverlauf variiert und im Mittel einen hohen Anteil (80–90%) niedrigintensiven Trainings (Z1) aufwies, wobei in der Vorbereitungsphase eine pyramidale TID Struktur (Z1>Z2>Z3) und in der Wettkampfvorbereitung die Tendenz zu einer vermehrt polarisierten Struktur (Z1>Z3>Z2) gefunden wurde. Somit weisen die Ergebnisse trotz der physiologischen sowie biomechanischen Unterschiede zu Sportarten, die Oberbzw. Ober- und Unterkörper bei der Vortriebsgenerierung einsetzen, eine vergleichbare TID Struktur im Kanurennsport auf. Es ist zu vermuten, dass der geringe Impact auf das Skelettmuskelsystem und die damit einhergehende Möglichkeit, sehr hohe Trainingsvolumen mit der vergleichsweise kleinen Oberkörpermuskulatur zu verwirklichen, diese TID-Struktur bedingen. Zudem konnte dargestellt werden, dass die Wahl der Quantifizierungsmethode (extern vs. intern; basierend auf physiologischen Parametern vs. Wettkampftempo) die Darstellung der TID beeinflusst. Für eine adäquate Vergleichbarkeit und den gezielten Einsatz muss insofern in der Forschung wie auch in den Sportarten ein Konsens über die Wahl der Quantifizierungsmethode erarbeitet werden. Es scheint zudem empfehlenswert die TID-Quantifizierungsmethode anhand der Trainingsphase auszuwählen, wobei sich in der allgemeinen und spezifischen Vorbereitungsperiode vorzugsweise eine TID Quantifizierung nach physiologischen Kenngrößen empfiehlt. Hierbei erscheint ein Mix aus HF-basierter Analyse für Z1 sowie für längere Belastungen in Z2 und geschwindigkeitsbasierter Analyse für Z3 sowie kürzere Belastungen der Z2 zweckmäßig. In der Wettkampfvorbereitung stellt sich dann zusätzlich eine Zoneneinteilung basierend auf dem Wettkampftempo als sinnvoll dar. Aufgrund der starken intra- und interindividuellen Variation der TID ist der individuelle Mehrwert der auf dem Gruppenmittelwert basierenden Ergebnisse jedoch zu hinterfragen und weist auf den Bedarf nach einer individuelleren Betrachtung der TID und ihrer Effekte hin. Genauso stellt sich ein starker Einfluss der allgemeinen physischen Aktivität sowie psychischer Belastungen auf die TID und ihre Effekte dar, der wiederrum die Notwendigkeit eines holistischen Betrachtungsansatzes für zukünftige Forschung aufzeigt. Außerdem gibt es im Allgemeinen eine große Wissenslücke in Bezug auf Athletinnen in der TIDForschung, weshalb die bisherigen Erkenntnisse für die Trainingsgestaltung weiblicher Athleten mit Vorsicht behandelt werden müssen. / Germany is one of the most successful nations at the summer Olympics in the sport of canoe sprint. With 12 events and therefore chances to win gold at the Olympics, the sport is important in German elite sports. However, research regarding canoe sprint is lacking, both nationally and internationally. Even though the sport displays a uniqueness, as the work is primarily performed with the musculature of the upper body. Within the last decades, one major topic within endurance sports research was the analysis of the optimal training intensity distribution (TID) to enhance performance adaptation in endurance athletes. Commonly, training intensity is categorized into a three-zone model with zone (Z) 1 being equal to intensities below the aerobic threshold, Z2 ranging between the aerobic and anaerobic threshold and Z3 being characterized as intensities above the anaerobic threshold. Research yields evidence that the TID is not only a consequence of the respective type of sport, exercise demands, training level of the athlete and phase of the season but also depends on how TID is quantified (e.g., heart rate, velocity, power, etc.). As existing research has focused on TID analysis in sports that propel the body with the lower-body (e.g., running, cycling) or the whole-body (e.g., swimming, rowing) musculature, evidence is lacking regarding the TID in sports primarily powered by the upper-body musculature like canoe sprint. To individually determine the distinct training intensity zones for each athlete, researchers and practitioners use incremental step tests to determine the maximum oxygen uptake and the performance corresponding to the aerobic and anaerobic lactate- or ventilatory-threshold. In canoe sprint, these incremental tests are generally implemented during laboratory tests using special canoe-/kayak-ergometers, as in the laboratory, environmental influences (wind, waves, temperature, stream) are significantly reduced. However, evidence suggests that the demands during ergometer bouts differ physiologically and biomechanically from specific on-water demands. Thus, the overall value of laboratory testing for performance diagnostics and training considerations must be questioned. Consequently, the current cumulative dissertation project aimed to (1) examine whether a laboratory-based performance diagnostic is comparable to a water-based diagnostic (study 1) and hereafter to choose the diagnostic method for the subsequent studies 2 and 3; and (2) to obtain initial scientific evidence regarding the TID and various quantification methods in canoe sprint (studies 2 & 3). Finally, the outcomes were discussed considering the current knowledge from other sports that primarily implement the lower body (e.g., running, cycling) or the whole body (e.g., biathlon, rowing) for propulsion. In summary, study 1 found differences in oxygen consumption, muscle oxygenation in the musculus biceps brachii, and the rating of perceived exertion between laboratory- and water-based incremental tests and thus indicated differences in physiological and biomechanical strain between the conditions. This suggests that water-based diagnostics should be preferred in canoe sprint to form proper conclusions from diagnostics and recommendations for training. Results from studies 2 & 3 found variation in the TID between the different phases of the season with high fractions (80-90%) of low-intensity training (e.g., Z1) on average, a pyramidal TID (Z1>Z2>Z3) during the preparatory phases and a tendency to a polarized TID (Z1>Z3>Z2) during the competition phase. Thus, the current evidence suggests a TID structure for canoe sprint that is comparable with sports that primarily use the lower-body or whole-body musculature for propulsion, despite differences in physiological and biomechanical demands. It can be assumed that the low impact on muscles, tendons, and bones during kayaking/canoeing and, consequently, the possibility of implementing high training volumes with the comparably small upper body musculature cause this TID structure. Furthermore, it was shown that the chosen TID quantification method (external vs. internal; physiologically based vs. race pace-based) impacts the description of the TID. Consequently, for adequate comparability and targeted implementation, both research and practice need to build a consensus regarding the choice of the TID quantification method. Furthermore, choosing the TID quantification method seems advisable depending on the training phase. Here, during the general and specific preparatory phase, TID quantification based on physiological measures is recommended, with a mix of heat rate-based analysis for Z1 sessions and sessions with longer-lasting Z2 bouts and velocity-based measures for Z3 and sessions with comparably short Z2 bouts. Additionally, quantifying TID based on race pace during the competition phase seems helpful. However, the large intra- and interindividual variation in the TID found in the current analyses raises doubts regarding the overall value of the current results based on group means and consequently increases the need for a more individual approach to the analysis of TID and its effects on performance. Similarly, there appears to be a considerable impact from general physical activity and psychological stressors on the TID and its effects, highlighting the need for a more holistic approach to the analysis of TID for future research. In addition, there is a lack of research on the TID in female athletes. Therefore, extrapolation of current knowledge for training prescription of female athletes should be done with caution.
3

Zum Einfluss der Lateralität in zyklischen Sportarten bei Nachwuchsathleten / The effect of laterality on young elite cyclic-sports athletes

Krüger, Tom January 2005 (has links)
Die Ausprägung der Lateralität der Körperextremitäten steht in engem Zusammenhang mit der Hemisphärenspezialisierung des menschlichen Gehirns. Die Lateralität und die Dominanz einer Hemisphäre mit ihren Auswirkungen auf die Leistungsfähigkeit ist ein bislang unvollständig untersuchtes Phänomen im Sport. In der vorliegenden Arbeit soll daher die Bedeutung der Seitigkeitsausprägung im Rahmen sportlicher Bewegungsabläufe geprüft werden. Sowohl bei Messungen im "Freiwasser", als auch in der "Kanu–Gegenstromanlage" im Bereich des Kanurennsportes werden seit einigen Jahren sich in Qualität und Quantität unterscheidende Kraft–Zeit–Funktionen der linken und rechten Körperseite beobachtet, die zwar dokumentiert, aber bislang ungeprüft in ihrer Bedeutung als leistungsbeeinflussend angenommen werden.<br><br> Im Zeitraum von Oktober 1997 bis Oktober 2000 wurden 275 Kajakfahrer und Canadierfahrer im Alter zwischen 11 und 20 Jahren zweimal jährlich (März und Oktober) mit einem umfangreichen trainings- und bewegungswissenschaftlichen sowie biomechanischen Instrumentarium untersucht. Die Athleten gehören zum Nachwuchs- und Anschlusskader des LKV Brandenburg. Schwerpunkt der Fragestellung ist der Zusammenhang von auftretenden Kraftdifferenzen zwischen der linken und rechten oberen Extremität und sportartspezifischen Leistungen unter Laborbedingungen und Feldbedingungen. Es wurden objektive Daten zu ausgewählten Kraftfähigkeiten der oberen Arm–Beuge–Schlinge an einem Kraftdiagnosegerät, Kraftverläufe am Messpaddel während Leistungsüberprüfungen im "Kanu–Gegenstromkanal" und im "Freiwasser" über 250 m und 2.000 m im Jahresverlauf erhoben.<br><br> Die Ergebnisse zeigen einen Trend der im Altersverlauf ansteigenden Differenz der Mittelwertunterschiede in der Maximalkraft zwischen dem linken und rechten Arm. Bei bestehenden Maximalkraftdifferenzen zwischen linker und rechter oberer Extremität in der Längsschnittgruppe liegen die Leistungen mit dem rechten Arm deutlich über den Kraftleistungen des linken Arms und sind nicht zufällig. Mit steigendem Maximalkraftniveau nimmt überraschenderweise auch die Differenz der Maximalkraft zwischen der linken und rechten oberen Extremität trotz bilateralen Trainings zu. Die Ergebnisse der EMG–Analyse bestätigen, dass die Maximalkraft leistungsbestimmend für die Bootsleistungen ist. In den EMG–Signalverläufen werden die unterschiedlichen Belastungen der Labor– und Feldbedingungen mit individuellen Charakteristika nachgezeichnet. Deutlich unterscheiden sich die Kraftverläufe im "Freiwasser" gegenüber den Kraftverläufen in der "Kanu–Gegenstromanlage".<br><br> Bei der vorliegenden Untersuchung handelt es sich um eine erste empirische Arbeit zur Auswirkung von Seitigkeitsunterschieden in zyklischen Sportarten auf der Expertiseebene. In der Untersuchung wurden methodische Verfahren eingesetzt, die dem derzeitigen Forschungsstand in der Trainings- und Bewegungswissenschaft entsprechen. Neben varianzanalytischen Verfahren der Auswertung zur Darstellung von Mittelwertunterschieden und Zusammenhänge prüfenden Verfahren wurden ebenso explorative EMG–Analysen angewandt. Die Ergebnisse aus dem Längsschnitt belegen bei ausschließlich rechtshändigen Probanden, dass die Schlussfolgerung von bevorzugter Extremität auf ein höheres Kraftniveau nicht eineindeutig ist. Zwischen den oberen Extremitäten bei Kanurennsportlern bestehen nicht nur zufällige Kraftunterschiede, trotz des bilateralen Trainings. Kontrovers diskutiert wird die Beziehung von bevorzugter Extremität und der Höhe der Kraftentfaltung. Im Alltagsverständnis wird häufig angenommen, dass ein höheres Maximalkraftniveau in der Extremität vorliegen muss, die auch die bevorzugte (z.B. Schreibhand) ist (WIRTH & LIPHARDT, 1999). Diese Eindeutigkeit konnte in der durchgeführten Untersuchung nicht bestätigt werden. Wie die Ergebnisse dieser Untersuchung deutlich zeigen, nimmt mit der höheren Maximalkraft aber auch die Differenz der Kraftleistungen zwischen dem linken und rechten Arm bei bilateral ausgerichtetem Training zu. FISCHER (1988; 1992) wies nach, dass sich ein Training auf der subdominanten Seite in einem kontralateralen Leistungstransfer auf der dominanten Seite positiv auswirkte. Erkenntnisse von KUHN (1986) und HOLLMANN & HETTINGER (2000) unterstützen nachhaltig die Ergebnisse. Die EMG–Ergebnisse zeigen die individuelle Reaktion auf die Belastungsanforderungen. Die elektromyographischen Daten beziehen sich auf den neuromuskulären Komplex. Somit sprechen hohe Amplitudenwerte einerseits für eine hohe Innervation der beteiligten motorischen Einheiten an der Bewegungsausführung und andererseits für einsetzende Ermüdungserscheinungen im Muskel. In Bezug auf die Ermüdung der oberen Extremitätenmuskeln der rechten und linken Seite beschreiben WILLIAMS, SHARMA & BILODEAU (2002) keine signifikanten Unterschiede zwischen der dominanten und nichtdominanten Handseite. / The development of body extremity laterality is closely linked to hemisphere specialization of the human brain. Laterality, the dominance of one hemisphere, and the effect of these two phenomena on sports performance capacity have yet to be described in detail. The question arises as to whether performance differences between paired extremities and the attendant extent of this difference might determine performance levels. In flat water canoeing, measurements in flat water as well as in the canoe counter current system reveal force time functions of the left and right body side that differ in quality and quantity. These differences have been documented for a number of years. However, so far their influence on performance has been presumed to exist and no attempt has been made to explain them.<br><br> During the period from October 1997 to October 2000, 275 kayakers and canoeists between the ages of 11 and 20 were examined twice annually (March and October) using extensive training scientific, kinetic and biomechanical equipment. The athletes were members of a state-wide canoeing club.<br><br> The main focus of the study was the correlation between (a) force differences arising between the left and right upper extremity and (b) athletic performance under laboratory conditions and field conditions. The following data was gathered: selected strength capacities of the upper arm flexor at a static strength measurement system (Wick & Krüger, 1998), force curves at the measuring paddle during exercise tests using the canoe counter current system and canoeing times in flat water over 250 m and 2,000 m during the course of the year.<br><br> The results of the static maximum force test showed that the difference in maximum force between the left and right arm increases with age. In the cross-sectional group, maximum force differences were observed between the left and right upper extremity; in terms of strength performance the right arm was clearly superior to the left arm. Despite bilateral training, contrary to what might be expected, the difference in maximum force between the left and right upper extremity increases with rising maximum force level. The proportional relationship remains unaffected by this. The evaluation of force parameters from the longitudinal and cross-sectional standpoint does not provide any clear indication of performance dominance of a specific extremity. The differences of the force parameters between the left and right upper extremity as measured in the canoe counter current system and in flat water are not stable. An analysis of EMG results confirmed that the maximum force has a decisive effect on canoeing performance. Force curves in flat water differ markedly from force curves in the canoe counter current system.<br><br> The present investigation is a first empirical paper on the effect of laterality differences on expert athletes in cyclic sports. The methodologies applied during the investigation correspond to the present state of research in the fields of training science and human kinetics. Variance-analytical methods of evaluation for the representation of average value differences, procedures that search connections and explorative EMG analyses were used. Results from the longitudinal section indicate that with exclusively right-handed subjects the preferred extremity cannot biuniquely be shown to have a higher force level. This result is confirmed by the cross-sectional findings. Despite bilateral training, force differences are observed between the upper extremities of canoeists. However, there is ongoing controversy about the relationship between preferred extremity and the extent of force development. The preferred extremity (e.g. the writing hand) is commonly believed to possess the higher maximum force level (Wirth & Liphardt, 1999). Nonetheless, this assumption could not be confirmed during the present investigation. However, the results of this investigation clearly show that as maximum force increases, the difference in strength performance between the left and right arm increases, including when bilateral training is applied. Fischer (1988; 1992) showed that training the subdominant side positively affected the dominant side. This is attributable to contralateral achievement transfer. These results are strongly supported by the findings of Kuhn (1986) and Hollmann & Hettinger (2000). The proportional difference remains stable over time with the athletes studied. This too supports the concept that the preferred extremity benefits from positive transfer effects. The electromyographic data pertains to the neuromuscular complex. Thus high amplitude values suggest on one hand a high innervation of the motor units involved in the performance of the movement and on the other hand the first signs of muscle fatigue. Williams, Sharma & Bilodeau (2002) found no significant differences between fatigue levels in the upper extremity muscles of the dominant and non-dominant extremity.
4

Energetics in Canoe Sprint

Li, Yongming 11 May 2015 (has links) (PDF)
This study reviewed first the development of race result in canoe sprint during the past decades. The race results of MK1-1000 and WK1-500 have increased 32.5 % and 42.1 %, respectively, a corresponding 5.0 % and 6.5 % increase in each decade. The development of race results in canoe sprint during the past decades resulted from the contributions of various aspects. The recruitment of taller and stronger athletes improved the physiological capacity of paddlers. Direct investigation on energy contribution in canoe sprint enhanced the emphasis on aerobic capacity and aerobic endurance training. Advancement of equipment design improved the efficiency of paddling. Physiological and biomechanical diagnostics in canoe sprint led to a more scientific way of training. Additionally, other aspects might also have contributed to the development of race results during the past decades. For example, the establishment of national team after World War II provided the possibility of systematic training, and the use of drugs in the last century accelerated the development of race results in that period. Recent investigations on energetics in high-intensity exercises demonstrated an underestimate of WAER % in the table provided by some textbooks since the 1960s. An exponential correlation between WAER % and the duration of high-intensity exercises was concluded from summarizing most of the relevant reports, including reports with different methods of energy calculation. However, when reports with the MAOD and Pcr-La-O2 methods were summarized separately, a greater overestimate of WAER % from MAOD was found compared to those from Pcr-La-O2, which was in line with the critical reports on MAOD. Because of the lack of investigation of the validity of the comparisons between MAOD and Pcr-La-O2, it is still not clear which method can generate more accurate results and which method is more reliable. With regard to kayaking, a range of variation in WAER % was observed. Many factors might contribute to the variation of WAER % in kayaking. Therefore, the methods utilized to calculate the energy contributions, different paddling conditions, and the level of performance were investigated in kayaking. The findings indicated that the method utilized to calculate the energy contributions in kayaking, rather than paddling condition and performance level of paddlers, might be the possible factor associated with WAER %. Some other possible factors associated with WAER % still need to be further investigated in the future. After verifying the dependence of WAER % on the method of energy calculation, but not on paddling condition and performance level of paddlers, energy contributions of kayaking were investigated for the three racing distances on a kayak ergometer with junior paddlers. Energetic profiles in kayaking varied with paddling distances. At 500 m and 1000 m the aerobic system was dominant (with WAER % of 57.8 % and 76.2 %), whereas at 200 m the anaerobic system was dominant (with WAER % of 31.1-32.4 %). Muscular volume seemed to have an influence on absolute energy productions. The anaerobic alactic system determined the performance during the first 5 to 10 s. The anaerobic lactic system probably played a dominant role during the period from the 5th-10th s to 30th-40th s. The aerobic system could dominate the energy contribution after 30–40 s. This energetic profile in kayaking could provide physiological support for developing the training philosophy in these three distances. Additionally, the method introduced by Beneke et al. seemed to be a valid method to calculate the energy contributions in maximal kayaking. Energy contributions in canoeing were similar to those in kayaking. The relative energy contributions on open water canoeing were 75.3 ± 2.8 % of aerobic, 11.5 ± 1.9 % of anaerobic lactic, and 13.2 ± 1.9 % of anaerobic alactic at maximal speed of simulated 1000 m. Further, the C of canoeing seemed also to be similar to the reported findings in kayaking, with a function of y = 0.0242 * x2.1225. Training programs could be designed similarly for kayaking and canoeing with regard to energetic profile. In order to extend the findings on energetics in canoe sprint to other exercises, energy contributions in kayaking, canoeing, running, cycling, as well as arm cranking were compared with the same duration. Results indicated that WAER % during maximal exercises with the same duration seemed to be independent of movement patterns, given similar VO2 kinetics during the maximal exertion. The exponential relationship between WAER % and duration in maximal exercises could be supported by excluding the influence from movement patterns. Additionally, MLSS in kayaking was investigated. The blood lactate value of MLSS was found to be 5.4 mM in kayaking, which could expand the knowledge of MLSS in different locomotion. The MLSS in kayaking might be attributed to the involved muscle mass in this locomotion, which could result in a certain level of lactate removal, and allow a certain level of equilibrium between lactate production and removal. LT5, instead of LT4, was recommended for diagnostics in kayaking, given an incremental test as used in this study.
5

Energetics in Canoe Sprint

Li, Yongming 10 February 2015 (has links)
This study reviewed first the development of race result in canoe sprint during the past decades. The race results of MK1-1000 and WK1-500 have increased 32.5 % and 42.1 %, respectively, a corresponding 5.0 % and 6.5 % increase in each decade. The development of race results in canoe sprint during the past decades resulted from the contributions of various aspects. The recruitment of taller and stronger athletes improved the physiological capacity of paddlers. Direct investigation on energy contribution in canoe sprint enhanced the emphasis on aerobic capacity and aerobic endurance training. Advancement of equipment design improved the efficiency of paddling. Physiological and biomechanical diagnostics in canoe sprint led to a more scientific way of training. Additionally, other aspects might also have contributed to the development of race results during the past decades. For example, the establishment of national team after World War II provided the possibility of systematic training, and the use of drugs in the last century accelerated the development of race results in that period. Recent investigations on energetics in high-intensity exercises demonstrated an underestimate of WAER % in the table provided by some textbooks since the 1960s. An exponential correlation between WAER % and the duration of high-intensity exercises was concluded from summarizing most of the relevant reports, including reports with different methods of energy calculation. However, when reports with the MAOD and Pcr-La-O2 methods were summarized separately, a greater overestimate of WAER % from MAOD was found compared to those from Pcr-La-O2, which was in line with the critical reports on MAOD. Because of the lack of investigation of the validity of the comparisons between MAOD and Pcr-La-O2, it is still not clear which method can generate more accurate results and which method is more reliable. With regard to kayaking, a range of variation in WAER % was observed. Many factors might contribute to the variation of WAER % in kayaking. Therefore, the methods utilized to calculate the energy contributions, different paddling conditions, and the level of performance were investigated in kayaking. The findings indicated that the method utilized to calculate the energy contributions in kayaking, rather than paddling condition and performance level of paddlers, might be the possible factor associated with WAER %. Some other possible factors associated with WAER % still need to be further investigated in the future. After verifying the dependence of WAER % on the method of energy calculation, but not on paddling condition and performance level of paddlers, energy contributions of kayaking were investigated for the three racing distances on a kayak ergometer with junior paddlers. Energetic profiles in kayaking varied with paddling distances. At 500 m and 1000 m the aerobic system was dominant (with WAER % of 57.8 % and 76.2 %), whereas at 200 m the anaerobic system was dominant (with WAER % of 31.1-32.4 %). Muscular volume seemed to have an influence on absolute energy productions. The anaerobic alactic system determined the performance during the first 5 to 10 s. The anaerobic lactic system probably played a dominant role during the period from the 5th-10th s to 30th-40th s. The aerobic system could dominate the energy contribution after 30–40 s. This energetic profile in kayaking could provide physiological support for developing the training philosophy in these three distances. Additionally, the method introduced by Beneke et al. seemed to be a valid method to calculate the energy contributions in maximal kayaking. Energy contributions in canoeing were similar to those in kayaking. The relative energy contributions on open water canoeing were 75.3 ± 2.8 % of aerobic, 11.5 ± 1.9 % of anaerobic lactic, and 13.2 ± 1.9 % of anaerobic alactic at maximal speed of simulated 1000 m. Further, the C of canoeing seemed also to be similar to the reported findings in kayaking, with a function of y = 0.0242 * x2.1225. Training programs could be designed similarly for kayaking and canoeing with regard to energetic profile. In order to extend the findings on energetics in canoe sprint to other exercises, energy contributions in kayaking, canoeing, running, cycling, as well as arm cranking were compared with the same duration. Results indicated that WAER % during maximal exercises with the same duration seemed to be independent of movement patterns, given similar VO2 kinetics during the maximal exertion. The exponential relationship between WAER % and duration in maximal exercises could be supported by excluding the influence from movement patterns. Additionally, MLSS in kayaking was investigated. The blood lactate value of MLSS was found to be 5.4 mM in kayaking, which could expand the knowledge of MLSS in different locomotion. The MLSS in kayaking might be attributed to the involved muscle mass in this locomotion, which could result in a certain level of lactate removal, and allow a certain level of equilibrium between lactate production and removal. LT5, instead of LT4, was recommended for diagnostics in kayaking, given an incremental test as used in this study.
6

Carsta Genäuß-Kühn: Vom Elbepaddeln zur Weltklassekanutin, Olympiasiegerin und siebenfachen Weltmeisterin: Ehemalige deutsche Kanutin, Werbemethodikerin (FH) und Restauratorin

Schönfuß-Krause, Renate 26 July 2022 (has links)
Carsta Genäuß-Kühn (* 30. Nov. 1959 Dresden) – vom Elbepaddeln zur Weltklassekanutin, Olympiasiegerin und siebenfachen Weltmeisterin. Aufgezeigt wird der Lebensweg einer der erfolgreichsten Kanurennsportlerinnen aller Zeiten, einer Frauenpersönlichkeit, die Höhen und Tiefen der sportlichen Laufbahn kennenlernte und deren sportliche Erfolge sie an die Weltspitze führten. Zumeist waren es die Gold-Plätze auf dem sogenannten Siegertreppchen, die von der Dresdner Sportlerin eingenommen wurden, wenn sie zwischen 1973 bis 1985 weltweit unzählige Wettbewerbe, DDR-Meisterschaften, Europa- und Weltmeisterschaften bestritt, oder 1980 olympisches Gold aus Moskau in ihre Heimatstadt Dresden brachte. Trainiert wurde sie durch den SC Einheit Dresden, einem der erfolgreichsten Leistungssportzentren im Sportsystem der DDR.

Page generated in 0.0521 seconds