• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DFIG-Based Split-Shaft Wind Energy Conversion Systems

Akbari, Rasoul 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this research, a Split-Shaft Wind Energy Conversion System (SS-WECS) is investigated to improve the performance and cost of the system and reduce the wind power uncertainty influences on the power grid. This system utilizes a lightweight Hydraulic Transmission System (HTS) instead of the traditional gearbox and uses a Doubly-Fed Induction Generator (DFIG) instead of a synchronous generator. This type of wind turbine provides several benefits, including decoupling the shaft speed controls at the turbine and the generator. Hence, maintaining the generator’s frequency and seeking maximum power point can be accomplished independently. The frequency control relies on the mechanical torque adjustment on the hydraulic motor that is coupled with the generator. This research provides modeling of an SS-WECS to show its dependence on mechanical torque and a control technique to realize the mechanical torque adjustments utilizing a Doubly-Fed Induction Generator (DFIG). To this end, a vector control technique is employed, and the generator electrical torque is controlled to adjust the frequency while the wind turbine dynamics influence the system operation. The results demonstrate that the generator’s frequency is maintained under any wind speed experienced at the turbine. Next, to reduce the size of power converters required for controlling DFIG, this research introduces a control technique that allows achieving MPPT in a narrow window of generator speed in an SS-WECS. Consequently, the size of the power converters is reduced significantly. The proposed configuration is investigated by analytical calculations and simulations to demonstrate the reduced size of the converter and dynamic performance of the power generation. Furthermore, a new configuration is proposed to eliminate the Grid- Side Converter (GSC). This configuration employs only a reduced-size Rotor-Side Converter (RSC) in tandem with a supercapacitor. This is accomplished by employing the hydraulic transmission system (HTS) as a continuously variable and shaft decoupling transmission unit. In this configuration, the speed of the DFIG is controlled by the RSC to regulate the supercapacitor voltage without GSC. The proposed system is investigated and simulated in MATLAB Simulink at various wind speeds to validate the results. Next, to reduce the wind power uncertainty, this research introduces an SS-WECS where the system’s inertia is adjusted to store the energy. Accordingly, a flywheel is mechanically coupled with the rotor of the DFIG. Employing the HTS in such a configuration allows the turbine controller to track the point of maximum power (MPPT) while the generator controller can adjust the generator speed. As a result, the flywheel, which is directly connected to the shaft of the generator, can be charged and discharged by controlling the generator speed. In this process, the flywheel energy can be used to modify the electric power generation of the generator on-demand. This improves the quality of injected power to the grid. Furthermore, the structure of the flywheel energy storage is simplified by removing its dedicated motor/generator and the power electronics driver. Two separate supervisory controllers are developed using fuzzy logic regulators to generate a real-time output power reference. Furthermore, small-signal models are developed to analyze and improve the MPPT controller. Extensive simulation results demonstrate the feasibility of such a system and its improved quality of power generation. Next, an integrated Hybrid Energy Storage System (HESS) is developed to support the new DFIG excitation system in the SS-WECS. The goal is to improve the power quality while significantly reducing the generator excitation power rating and component counts. Therefore, the rotor excitation circuit is modified to add the storage to its DC link directly. In this configuration, the output power fluctuation is attenuated solely by utilizing the RSC, making it self-sufficient from the grid connection. The storage characteristics are identified based on several system design parameters, including the system inertia, inverter capacity, and energy storage capacity. The obtained power generation characteristics suggest an energy storage system as a mix of fast-acting types and a high energy capacity with moderate acting time. Then, a feedback controller is designed to maintain the charge in the storage within the required limits. Additionally, an adaptive model-predictive controller is developed to reduce power generation fluctuations. The proposed system is investigated and simulated in MATLAB Simulink at various wind speeds to validate the results and demonstrate the system’s dynamic performance. It is shown that the system’s inertia is critical to damping the high-frequency oscillations of the wind power fluctuations. Then, an optimization approach using the Response Surface Method (RSM) is conducted to minimize the annualized cost of the Hybrid Energy Storage System (HESS); consisting of a flywheel, supercapacitor, and battery. The goal is to smooth out the output power fluctuations by the optimal size of the HESS. Thus, a 1.5 MW hydraulic wind turbine is simulated, and the HESS is configured and optimized. The direct connection of the flywheel allows reaching a suitable level of smoothness at a reasonable cost. The proposed configuration is compared with the conventional storage, and the results demonstrate that the proposed integrated HESS can decrease the annualized storage cost by 71 %. Finally, this research investigates the effects of the reduced-size RSC on the Low Voltage Ride Through (LVRT) capabilities required from all wind turbines. One of the significant achievements of an SS-WECS is the reduced size excitation circuit. The grid side converter is eliminated, and the size of the rotor side converter (RSC) can be safely reduced to a fraction of a full-size excitation. Therefore, this low-power-rated converter operates at low voltage and handles the regular operation well. However, the fault conditions may expose conditions on the converter and push it to its limits. Therefore, four different protection circuits are employed, and their effects are investigated and compared to evaluate their performance. These four protection circuits include the active crowbar, active crowbar along a resistorinductor circuit (C-RL), series dynamic resistor (SDR), and new-bridge fault current limiter (NBFCL). The wind turbine controllers are also adapted to reduce the impact of the fault on the power electronic converters. One of the effective methods is to store the excess energy in the generator’s rotor. Finally, the proposed LVRT strategies are simulated in MATLAB Simulink to validate the results and demonstrate their effectiveness and functionality.
2

Contribution à l'étude des convertisseurs statiques AC-DC-AC tolérants aux défauts / Contribution to the study of fault tolerant AC-DC-AC converters

Shahbazi, Mahmoud 17 September 2012 (has links)
Les convertisseurs statiques triphasés AC/DC/AC à structure tension sont largement utilisés dans de nombreuses applications de puissance. La continuité de service de ces systèmes ainsi que leur sécurité, leur fiabilité et leurs performances sont aujourd'hui des préoccupations majeures de ce domaine lié à l'énergie. En effet, la défaillance du convertisseur peut conduire à la perte totale ou partielle du contrôle des courants de phase et peut donc provoquer de graves dysfonctionnements du système, voire son arrêt complet. Afin d'empêcher la propagation du défaut aux autres composants du système et assurer la continuité de service en toute circonstance lors d'une défaillance du convertisseur, des topologies de convertisseur "fault tolerant" associées à des méthodes efficaces et rapides de détection et de compensation de défaut doivent être mises en oeuvre. Dans ce mémoire, nous étudions la continuité de service de trois topologies de convertisseurs AC/DC/AC avec ou sans redondance, lors de la défaillance d'un de leurs interrupteurs. Deux applications sont ciblées : l'alimentation d'une charge RL triphasée et un système éolien de conversion de l'énergie basé sur une MADA. Un composant FPGA est utilisé pour la détection du défaut, afin de réduire autant que possible son temps de détection. Des variantes permettant d'optimiser la méthode de détection de défaut sont également proposées et évaluées. Les trois topologies de convertisseurs proposées, associées à leurs contrôleurs, ont été validées de la modélisation/ simulation à la validation sur banc de test expérimental, en passant par le prototypage "FPGA in the Loop" du FPGA, destiné plus spécifiquement à la détection du défaut / AC/DC/AC converters are widely being used in a variety of power applications. Continuity of service of these systems as well as their reliability and performances are now of the major concerns. Indeed, the failure of the converter can lead to the total or partial loss of the control of the phase currents and can cause serious system malfunction or shutdown. Thus, uncompensated faults can quickly endanger the system. Therefore, to prevent the spread of the fault to the other system components and to ensure continuity of service, fault tolerant converter topologies associated to quick and effective fault detection and compensation methods must be implemented. In this thesis, we present the continuity of service of three AC/DC/AC fault tolerant converters with or without redundancy, in the presence of a fault in one of their switches. Two types of applications are studied: the supply off a three-phase charge and a wind energy conversion system based on a DFIG. An FPGA based implementation is used for fault detection, in order to reduce the detection time as much as possible. Three optimizations in the fault detection method are also presented. During these researches, the three proposed converter topologies and their controllers are validated in simulations and also experimentally, while being validated in a "FPGA in the Loop" prototyping
3

Contribution à la commande et à l'observation adaptatives par modes glissants d'ordres supérieurs : Application aux systèmes de gestion de l'énergie. / Contribution to adaptive higher order sliding mode controllers and observers : Application to energy management systems.

Obeid, Hussein 05 November 2018 (has links)
Cette thèse porte sur le développement de nouvelles stratégies de commande et d’observation adaptatives par Modes Glissants (MG) et par Modes Glissants d’Ordres Supérieurs (MGOS). En effet, la mise en œuvre des commandes par MG et MGOS classiques nécessite la connaissance des limites supérieures des perturbations ou de leurs dérivées, souvent inconnues. Le premier apport de cette thèse est la synthèse d’une stratégie d’adaptation permettant d'assurer la convergence de la variable de glissement vers un voisinage prédéfini de zéro sans nécessiter d'informations sur les perturbations ou leurs dérivées et sans surestimation du gain. Cette stratégie est ensuite déclinée pour concevoir : deux commandes par MG d’ordre 1 et 2, une commande par mode glissant intégral, ainsi qu’une version du différenciateur de Levant. La deuxième contribution de la thèse est la mise au point de deux commandes adaptatives par MGOS discontinues. Ces deux algorithmes assurent un mode glissant d'ordre n en s’affranchissant de la connaissance de la limite supérieure de la perturbation et de sa dérivée. Enfin, afin de montrer l’efficacité des algorithmes proposés, ils sont appliqués avec succès à travers des simulations pour la commande d’un système de conversion de l’énergie éolienne et la commande d’un moteur à induction linéaire pour la cogénération. / This thesis deals with the development of novel strategies to adapt higher order sliding mode controllers and observers. The implementation of classics first order and higher order sliding mode controllers requires the knowledge of the upper bound of the disturbance or its derivative, which are often not known. The first contribution of this thesis is the design of an adaptive strategy that can ensure the convergence of the sliding variable to a predefined neighborhood of zero without requiring any information of the disturbance or its derivative and without overestimating the adaptive gain. This adaptive strategy is then declined for the design of the first order, second order and integral sliding mode controllers, and for the Levant's differentiator. The second contribution of the thesis is the development of two adaptive strategies for discontinuous higher order sliding mode control. The proposed two algorithms can provide the achievement of n-order sliding mode despite disturbances with unknown upper bounds or with unknown upper bounds of their derivatives. Finally, in order to show the effectiveness of the proposed algorithms, they are successfully applied through simulations to control the wind energy conversion system and the linear induction motor system for cogeneration.
4

Contribution to adaptative sliding mode, fault tolerant control and control allocation of wind turbine system / Contribution à la commande par modes glissants adaptative et tolérantes aux défauts : Application au système éolien

Liu, Xinyi 25 November 2016 (has links)
Les principaux défis pour le déploiement de systèmes de conversion de l'énergie éolienne est de maximiser la puissance électrique produite, malgré les variations des conditions météorologiques, tout en minimisant les coûts de fabrication et de maintenance du système. L'efficacité de la turbine éolienne est fortement dépendante des perturbations de l'environnement et des paramètres variables du système, tels que la vitesse du vent et l'angle de tangage. Les incertitudes sur le système sont difficiles à modéliser avec précision alors qu'ils affectent sa stabilité.Afin d'assurer un état de fonctionnement optimal, malgré les perturbations, le commande adaptative peut jouer un rôle déterminant. D'autre part, la synthèse de commandes tolérantes aux défauts, capables de maintenir les éoliennes connectées au réseau après la survenance de certains défauts est indispensable pour le bon fonctionnement du réseau. Le travail de cette thèse porte sur la mise en place de lois de commande adaptatives et tolérantes aux défauts appliqués aux systèmes de conversion de l'énergie éolienne. Après un état de l'art, les contributions de la thèse sont :Dans la première partie de la thèse, un modèle incertain non linéaire du système de conversion d'énergie éolienne avec un générateur à induction à double alimentation est proposé. Une nouvelles approches de commande adaptative par mode glissant est synthétisée et ensuite appliquée pour optimiser l'énergie issue de l'éolienne.Dans la deuxième partie, une nouvelle commande par modes glissants tolérante aux défauts et basée sur les modes glissants intégrales est présentée. Puis, cette méthode est appliquée afin de forcer la vitesse de la turbine éolienne à sa valeur optimale en prenant en compte des défauts qui surviennent sur l'actionneur. / The main challenges for the deployment of wind energy conversion systems (WECS) are to maximize the amount of good quality electrical power extracted from wind energy over a significantly wide range of weather conditions and minimize both manufacturing and maintenance costs. Wind turbine's efficiency is highly dependent on environmental disturbances and varying parameters for operating conditions, such as wind speed, pitch angle, tip-speed ratio, sensitive resistor and inductance. Uncertainties on the system are hard to model exactly while it affects the stability of the system. In order to ensure an optimal operating condition, with unknown perturbations, adaptive control can play an important role. On the other hand, a Fault Tolerant Control (FTC) with control allocation that is able to maintain the WECS connected after the occurrence of certain faults can avoid major economic losses. The thesis work concerns the establishment of an adaptive control and fault diagnosis and tolerant control of WECS. After a literature review, the contributions of the thesis are:In the first part of the thesis, a nonlinear uncertain model of the wind energy conversion system with a doubly fed induction generator (DFIG) is proposed. A novel Lyapunov-based adaptive Sliding Mode (HOSM) controller is designed to optimize the generated power.In the second part, a new output integral sliding mode methodology for fault tolerant control with control allocation of linear time varying systems is presented. Then, this methodology has been applied in order to force the wind turbine speed to its optimal value the presence of faults in the actuator.
5

Ανάπτυξη δυναμικού μοντέλου και έλεγχος ανεμογεννήτριας συνδεδεμένης στο δίκτυο και σε αυτόνομη λειτουργία εφοδιασμένη με διάταξη αποθήκευσης ενέργειας

Δημητρακάκης, Στέφανος 18 June 2014 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη και τη μοντελοποίηση ενός αιολικού συστήματος παραγωγής ηλεκτρικής ενέργειας βασισμένο σε σύγχρονη γεννήτρια μόνιμου μαγνήτη (PMSG). Ειδικότερα, παρουσιάζονται και αναλύονται όλα τα τμήματα που αποτελούν το αιολικό σύστημα καθώς και οι λογικές ελέγχου που ακολουθήθηκαν για την αποτελεσματική λειτουργία του. Επιπλέον, μελετάται και μοντελοποιείται μια διάταξη αποθήκευσης ενέργειας από την οποία πλαισιώνεται το αιολικό σύστημα κατά την αυτόνομη λειτουργία του. Τέλος, παρουσιάζονται και σχολιάζονται τα αποτελέσματα της προσομοίωσης της λειτουργίας του συστήματος, σε σύνδεση με το δίκτυο και κατά την αυτόνομη λειτουργία του. Για την ανάπτυξη του μοντέλου και την προσομοίωση χρησιμοποιήθηκε το πρόγραμμα Simulink/Matlab. Στο Κεφάλαιο 1 γίνεται αναφορά στο ενεργειακό πρόβλημα και μια γενική εισαγωγή στις ανανεώσιμες πηγές ενέργειας. Επιπλέον, δίνονται διάφορες πληροφορίες γύρω από την αιολική ενέργεια και αναλύονται τα πλεονεκτήματα και μειονεκτήματα της χρήσης ανεμογεννητριών. Επίσης, παρουσιάζεται η δομή μιας ανεμογεννήτριας και παραθέτονται διάφοροι τύποι ανεμογεννητριών, ενώ δίνονται και οι βασικές σχέσεις μετατροπής της αιολικής ενέργειας σε ηλεκτρική. Στο Κεφάλαιο 2 γίνεται ανάλυση κάθε τμήματος της ανεμογεννήτριας (πτερωτή, σύστημα μετάδοσης κίνησης, γεννήτρια) και παρατίθενται οι εξισώσεις που περιγράφουν τη λειτουργία τους. Επιπρόσθετα, παρουσιάζεται ο τρόπος μοντελοποίησης του κάθε τμήματος στο περιβάλλον του Simulink. Ιδιαίτερη έμφαση δόθηκε στη μελέτη της σύγχρονης γεννήτριας μόνιμου μαγνήτη καθώς παρουσιάζεται με λεπτομέρεια η δομή της καθώς και οι αρχές που διέπουν τη λειτουργία της. Τέλος, δίνονται όλα τα χαρακτηριστικά μεγέθη της ανεμογεννήτρια που χρησιμοποιήθηκε στην παρούσα εργασία. Στο Κεφάλαιο 3 αρχικά, γίνεται μια γενική παρουσίαση των στοιχείων που αποτελούν τους μετατροπείς, ενώ στη συνέχεια παρουσιάζονται οι βασικές κατηγορίες μετατροπέων που υπάρχουν και αναφέρονται μερικοί βασικοί τύποι μετατροπέων που βρίσκουν εφαρμογή σε αιολικά συστήματα γενικότερα. Έπειτα, το κεφάλαιο επικεντρώνεται στους μετατροπείς που χρησιμοποιήθηκαν στο αιολικό σύστημα της παρούσας εργασίας καθώς εξηγείται ο τρόπος λειτουργίας τους και παρουσιάζεται ο τρόπος μοντελοποίησης τους στο Simulink. Έμφαση δόθηκε στον dc/dc μετατροπέα ανύψωσης τάσης που χρησιμοποιήθηκε, όπου γίνεται διαστασιολόγηση και παρουσιάζεται μια μικρή προσομοίωση της λειτουργίας του. Τέλος, παρουσιάζεται, επίσης, το φίλτρο που τοποθετείται στην έξοδο του αντιστροφέα. Στο Κεφάλαιο 4 περιγράφονται αναλυτικά η τεχνική διαμόρφωσης εύρους παλμών (PWM) και η τεχνική της ημιτονοειδούς διαμόρφωσης εύρους παλμών (SPWM), οι οποίες και εφαρμόστηκαν για την παλμοδότηση των μετατροπέων. Στη συνέχεια, περιγράφονται αναλυτικά οι μηχανισμοί ελέγχου που εφαρμόστηκαν με τη βοήθεια PI ελεγκτών, τόσο στην πλευρά της μηχανής (dc/dc μετατροπέας ανύψωσης τάσης) όσο και στον αντιστροφέα του αιολικού συστήματος. Στο Κεφάλαιο 5 παρουσιάζονται και σχολιάζονται τα αποτελέσματα της προσομοίωσης του αιολικού συστήματος σε σύνδεση με το δίκτυο. Το σύστημα προσομοιώνεται για δύο περιπτώσεις, σε πρώτη φάση γίνεται προσομοίωση του συστήματος υπό σταθερή ταχύτητα ανέμου ίση με 12 m/s και σε δεύτερη φάση προσομοιώνεται η λειτουργία του συστήματος για βηματικές μεταβολές της ταχύτητας του ανέμου. Στο Κεφάλαιο 6 μελετάται η αυτόνομη λειτουργία του αιολικού συστήματος το οποίο, πλέον, πλαισιώνεται με μια διάταξη αποθήκευσης ενέργειας. Αρχικά, παρουσιάζεται το σύστημα αποθήκευσης ενέργειας που χρησιμοποιήθηκε. Συγκεκριμένα η συστοιχία μπαταριών της οποίας δίνονται τα χαρακτηριστικά μεγέθη, καθώς και το μοντέλο της στο Simulink. Επίσης, παρουσιάζεται και μοντελοποιείται ο dc/dc μετατροπέας δύο κατευθύνσεων ο οποίος συνδέει τη συστοιχία με το υπόλοιπο σύστημα. Στη συνέχεια, περιγράφεται αναλυτικά ο μηχανισμός ελέγχου που εφαρμόζεται στη διάταξη αποθήκευσης ενέργειας για τον έλεγχο της φόρτισης/εκφόρτισης. Στο τέλος του κεφαλαίου παρουσιάζονται τα αποτελέσματα της προσομοίωσης του αυτόνομου αιολικού συστήματος για σταθερή ταχύτητα ανέμου-μεταβαλλόμενο φορτίο και για μεταβαλλόμενο άνεμο-σταθερό φορτίο. / In this thesis, a wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG) was studied and simulated. All parts of the WECS are presented and discussed in detail. Furthermore, control strategies for the generator-side converter and the voltage source inverter are developed. The WECS is simulated both in grid connected and stand-alone mode. In the stand-alone mode, the WECS is supplied with an energy storage system for which a bi-directional buck/boost converter and control strategy was designed. Finally, simulation results are presented and performance of the system in various modes of operation is evaluated. Simulink/Matlab is used for modeling and simulating the WECS. At the beginning of Chapter 1, a discussion of energy crisis and renewable energy sources is held. Furthermore, information about wind energy has been reviewed and its benefits and drawbacks are examined. In addition, the structure of a wind turbine and the principles of converting wind energy into electricity are presented. In Chapter 2 all parts of the wind turbine are studied and its characteristics are specified. Even more, the model of every part in Simulink is presented. Theoretical background, structure and operation principles of PMSG are presented in detail. In Chapter 3, firstly a general presentation of converters components takes place. Then the major existing categories of converter are presented and some basic types of converters, which are generally used in WECS, are mentioned. Moreover, the chapter focuses on the converters that are used in this thesis, explaining the way they operate. After all, their models in Simulink are shown. Emphasis was given to the dc/dc boost converter whose parameters are calculated and its operation is simulated. Finally, there is a presentation of the filter which was placed at the output of the inverter. In Chapter 4, Pulse-width Modulation (PWM) and Sinusoidal Pulse-width Modulation (SPWM) techniques that are used in this thesis are described. Moreover, the control strategy for the generator-side converter with maximum power extraction is presented. The control strategy of the voltage sourced inverter is shown as well. In Chapter 5 simulation results of the grid connected WECS are presented and evaluated. On the first part of the presentation, the WECS is simulated for constant wind speed (12m/s), and in the second part for step-changed wind speed. In Chapter 6 the stand-alone operation of the WECS is studied and supplied with an energy storage system. Initially, there is an analysis of the energy storage system, which was used, and in particular the battery bank, whose characteristics are given. Moreover, a Bi-directional dc/dc Buck-Boost converter which is used to interconnect the battery bank to the dc-link is presented and modeled. Afterwards, there is a detailed description of the control strategy used in order to control charging / discharging of the battery bank. At the end of this chapter, simulation results of two different stand-alone operation modes are presented, one with constant wind speed and variable load and the other one with step-changing wind speed and constant load.

Page generated in 0.0895 seconds