• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 251
  • 48
  • 46
  • 39
  • 26
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 572
  • 572
  • 130
  • 123
  • 98
  • 98
  • 78
  • 71
  • 70
  • 56
  • 56
  • 55
  • 55
  • 50
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Sistemas eletroquímicos foto-assistidos para conversão e armazenamento de energia, e dessalinização / Photo-assisted electrochemical systems for energy conversion and storage, and desalination

William Gomes de Morais 04 May 2018 (has links)
O desenvolvimento de fontes alternativas de energia, com o intuito de diminuir a poluição gerada pela queima de combustíveis fósseis, tem estimulado cientistas a procurar novos meios de converter e armazenar energia. Adicionalmente, mudanças climáticas e o crescimento populacional têm gerado uma preocupação crescente com relação à escassez de água. Atualmente, cerca de 3% do consumo global de energia elétrica é referente ao tratamento de águas residuais oriundas de zonas urbanas. A humanidade precisa encontrar meios de usar água limpa e potável de forma mais eficiente. O armazenamento de energia durante o tratamento de águas residuais pode encorajar a preservação ambiental, e desta forma, contribuir para um crescimento mais sustentável, pois pode tornar-se rentável para as indústrias que geram e tratam estes resíduos. Uma estratégia é a utilização de gradientes iônicos e, então, convertê-los em energia elétrica. Pesquisas têm sido realizadas com sistemas contendo soluções eletrolíticas, com diferentes concentrações, e utilizando ciclos eletroquímicos para produzir trabalho elétrico. Neste contexto, são propostos sistemas eletroquímicos, chamados máquinas ácido-base foto-assistidas, que possibilitam a conversão, e o armazenamento, de energia elétrica durante a neutralização de soluções ácidas mediante irradiação de luz UV. Configurações alternativas destes dispositivos permitem, também, a dessalinização de soluções salinas com a possibilidade de recuperar parte da energia utilizada no procedimento. O princípio operacional destes sistemas baseia-se na variação entrópica, oriunda da mudança nas atividades de prótons e íons alcalinos, como também, na conversão de energia eletromagnética em energia elétrica. Através de experimentos de prova de conceito, foi possível obter 108 kJ por mol de íon eletroinserido, valor que corresponde a 10,8 kJ dm-3 de solução ácida neutralizada. / The development of alternative energy sources to mitigate the pollution generated by fossil fuel combustion has stimulated the search for new ways to convert and to harvest energy. Climate change, pollution, and population growth have raised concern about water scarcity. Nowadays, about 3% of the global electricity is consumed by municipal wastewater treatment plants. Humankind has to find the means to use clean and potable water more effectively. One strategy to harvest energy is to employ an ionic gradient and then convert it into electrical energy. Researchers have recently tested systems that apply electrolytic solutions containing different salt concentrations to deliver work after electrochemical cycles. Energy harvesting during wastewater treatment should encourage environmental preservation and contribute to sustainable growth. In this context, electrochemical systems are proposed, so-called photo-assisted acid-base machines, which promote energy conversion and harvesting during acidic solution neutralization under UV irradiation. Also, alternative configurations of these systems allow the desalination of salt solutions with regain of part of the used energy. Operating principle of these machines is based upon entropic variation, associated with proton and alkali ion activity changes, and in the conversion of the electromagnetic energy into electrical energy. Proof-of-concept experiments provided 108 kJ per mol of electroinserted ion, which corresponds to 10.8 kJ dm-3 of neutralized acid solution.
102

Radio frequency energy harvesting for embedded sensor networks in the natural environment

Sim, Zhi Wei January 2012 (has links)
The agricultural sector is an emerging application area for Wireless Sensor Networks (WSNs). This requires sensor nodes to be deployed in the outdoor environment so as to monitor pertinent natural features, such as soil condition or pest infestation. Limited energy supply and subsequent battery replacement are common issues for these agricultural sensor nodes. One possible solution is to use energy harvesting, where the ambient energy is extracted and converted into usable electrical form to energise the wireless sensors. The work presented in this thesis investigates the feasibility of using Radio Frequency (RF) energy harvesting for a specific application; that is powering a generic class of wireless ground-level, agricultural sensor networks operating in an outdoor environment. The investigation was primarily undertaken through a literature study of the subject. The first part of the thesis examines several energy harvesting/ wireless energy transfer techniques, which may be applicable to power the targeted agricultural WSN nodes. The key advantages and limitations of each technique are identified, and the rationale is being given for selecting far-field RF energy harvesting as the investigated technique. It is then followed by a theoretical-based system analysis, which seeks to identify all relevant design parameters, and to quantify their impact on the system performance. An RF link budget analysis was also included to examine the feasibility of using RF energy harvesting to power an exemplar WSN node - Zyrox2 Bait Station. The second part of the thesis focuses on the design of two energy harvesting antennas. The first design is an air-substrate-based folded shorted patch antenna (FSPA) with a solid ground plane, while the second design is a similar FSPA structure with four pairs of slot embedded into its ground plane. Both antennas were simulated, fabricated and tested inside an anechoic chamber, and in their actual operating environment - an outdoor field. In addition, a power harvester circuit, built using the commercially available off-the-shelf components, was tested in the laboratory using an RF signal generator source. The results from both the laboratory and field trial were analysed. The measurement techniques used were reviewed, along with some comments on how to improve them. Further work on the RF energy harvester, particularly on the improvement of the antenna design must be carried out before the feasibility and viable implementations for this application can be definitively ascertained.
103

Studies on High Potential Porphyrin-fullerene Supramolecular Dyads

Song, Baiyun 12 1900 (has links)
Photoinduced electron transfer in self-assembled via axial coordination porphyrin-fullerene dyads is investigated. Fullerene functionalized with imidazole and fullerenes functionalized with pyridine are chosen as electron acceptors, while zinc pophyrin derivatives are utilized as electron donors. The electron withdrawing ability of halogen atoms make the porphyrin ring electrophilic, which explained the binding of (F20TPP)Zn with fullerene derivatives having the highest binding constant around 105M-1. Another important observation is that the fullerene imidazole binding to zinc pophyrin had higher stability than fullerene pyridine-porphyrin dyad. Computational DFT B3LYP-21G(*) calculations are used to study the geometric and electronic structures. The HOMO and LUMO was found to be located on the porphyrin and fullerene entities, respectively. Photoinduced electron transfer is investigated by the steady-state absorption and emission, differential pulse voltammetry, and nanosecond and femtosecond transient absorption studies. The measurements provided the same conclusion that the increasing number of the halogen atoms on the porphyrin ring leads to the higher binding of porphyrin-fullerene supramolecular dyads and efficient charge separation and charge recombination processes.
104

Two-Dimensional Transition Metal Carbides (MXenes) for Electronic and Energy Harvesting Applications

Kim, Hyunho 13 October 2020 (has links)
Nanomaterials have been served as essential building blocks in the era of nanotechnology. Nanomaterials often exhibit different properties compared to their bulk phase, due to heavily enlarged portion of surface characteristics to the bulk. Beyond the simple size- effect, nanomaterials can be classified into 0D, 1D, and 2D materials depends on the number of restricted dimensionalities. They exhibit different unique properties and transport mechanism due to the quantum confinement effect. MXenes are one of the latest additions of 2D material family that can be obtained by selective chemical etching and exfoliation of layered ternary precursors (Mn+1AXn phases). Due to the unique etch process, surface functional groups (such as oxygen, hydroxyl, fluorine, etc) are formed at the surface of MXenes. This benefits MXenes for stable aqueous dispersions due to their hydrophilic surface. The coexistence of hydrophilicity and high electrical conductivity promised MXenes in superior performance in electrochemical energy storage and electromagnetic interference shielding applications. These characteristics are equally important for electronic applications. From the synthesis of MXene suspension to thin film deposition by spray-coating and photolithography patterning of MXene films are discussed for electronic device applications of MXenes. Vacuum-assisted filtration method was used for Mo-based MXene freestanding papers for investigation of thermoelectric energy harvesting performances. Both n-type ZnO and p-type SnO thin film transistors with MXene electrical contacts (gate, source, and drain electrodes) have been demonstrated by lift-off patterning method. Their complementary metal-oxide-semiconductor (CMOS) inverter exhibits a high gain value of 80 V/V at a supply voltage of 5 V. The lift-off patterning is simple but effective method for top-contact electrode patterning. However, it has a disadvantage of remaining sidewall-like MXene residue, resulting in leakage issues in the bottom-contact transistor structure. Hence, dry-etch patterning method is developed which allows direct patterning of MXene nanosheet thin films through conventional photolithography process. The conductive MXene electrode array was integrated into a quantum dot electric double layer transistors by all solution processes, which possess impressive performance including electron mobility of 3.3 cm2/V·s, current modulation of 104, threshold voltage as low as 0.36 V at low driving gate voltage range of only 1.25 V.
105

Queuing models for analysing and managing harvested energy in wireless sensor networks

Angwech, Otim Patricia January 2021 (has links)
The advancement of wireless technology has led to an increase in the employment of wireless sensor networks (WSNs). Traditionally, WSNs are powered by batteries. However, the high power consump- tion and the need to change the batteries regularly has made these networks costly to maintain. The nodes in the WSNs are increasingly strained as power consumption increases and the batteries are depleted faster. This has consequently decreased the overall lifetime of the WSNs. Although many energy-conserving techniques exist, for example energy-efficient medium access control and energy-efficient routing protocols, energy consumption remains one of the significant constraints in the development of WSNs. A natural solution to this constraint is harvesting energy from the environment. However, unlike conventional energy, energy harvested from the environment is random in nature, making it challenging to realise energy-harvesting transmission schemes. Although energy harvesting might be considered a solution to many problems, it brings about new challenges with regard to the usage and management of the energy harvested. Some of these challenges include uneven consumption of power in the network, resulting in dead nodes in some portion of the network and the batteries used in the network are being affected negatively by the energy usage; they may consequently sustain the nodes for long or short periods. To analyse the usage and consumption of energy, a number of techniques have been proposed, namely; information theory, game theory and queueing theory. By this time, the performance of the sensor nodes in WSNs has been analysed making use of a queueing-theoretic model for each sensor. The aforementioned model inadequately expresses the physical constraints, namely, the energy drawing process and the finite battery capacity. This research focuses on developing a model that captures the harvesting, accumulation and dissipation of energy, utilising queueing theory. A rechargeable battery with a finite storage capacity will be used. To ensure that the battery does not lose its capability to store charge after being recharged repeatedly, the leaky bucket model is proposed to check the network data flow as the harvested energy in the WSN is analysed. To capture real-world WSNs with energy harvesting in which there is energy leakage, the energy- harvesting sensor node performance is analysed with two assumptions: data transmission and energy leakage occurring and the token buffer being subjected to a threshold. The system had finite buffers for the data and energy. To make it possible to have some influence over the system performance measures a threshold is imposed on the token buffer. Four models are developed: a basic model, a basic model with leakage incorporated, a basic model with leakage and priority incorporated and a basic model with leakage, priority and threshold incorporated. The developed models are simulated and results for the performance measures are obtained. / Dissertation (MEng (Computer Engineering))--University of Pretoria, 2021. / BWMC, NRF / Electrical, Electronic and Computer Engineering / MEng (Computer Engineering) / Unrestricted
106

Energeticky nezávislý průtokoměr s dálkovým odečtem / The energy independent flow meter with remote reading

Šindelář, Jindřich January 2015 (has links)
The thesis is focused on the design of a self-powered sensor for measurement of water flow rate and temperature in water pipelines. The key block of this thesis is the construction of an electric generator powered by excitation with turbulent flow. The generated voltage should power the sensor's circuits and allow water flow rate measurements. Throughout the development, three prototypes of generators powered by turbulent flow were created. Turbulences were not created by an insertion of a bluff body but by inner geometry of the pipeline elements. Maximum power of 10,66 uW was generated at flow rate of 8 m3/h. Afterwards, a prototype of water flow rate and temperature sensor was assembled. Energy self-sufficiency of the device at common flow rates was not achieved using the chosen procedure. The designed flow rate measurement method is suitable for an approximate flow rate estimation.
107

Simulační modelování elektromagnetického vibračního generátoru / Simulation Modelling of Electromagnetic Vibration Power Generator

Novosád, Boris January 2009 (has links)
The aim of this work is to create complex virtual model of electromagnetic vibration generator. This model will include mechanical and electromagnetic subsystem and also the model of output circuit. Created model will be implemented in Matlab/Simulink enviroment and model parameters will be identified so that the compare of simulation and real results will be acceptable.
108

Energy harvesting pro letecké aplikace / Energy Harvesting for Aeronautic Applications

Maťaš, Marek January 2013 (has links)
This thesis will focus on creating electromagnetic vibration generator for a project ESPOSA. This generator will be used in aeronautical application. There it will be powering required electronics. Electronics is thought a part, which will be sensing, writing and sending required data.
109

A New Approach to Wide Bandwidth Energy Harvesting for Piezoelectric Cantilever Based Harvesters

Turner, John Andrew 27 March 2013 (has links)
This thesis proposes a control system to widen the bandwidth of piezoelectric transducers (PZTs) for vibration energy harvesting while extracting maximum power. A straightforward complex conjugate match achieves maximum power transfer only at a single frequency while requiring an impractically large inductance. The proposed system intends to address these problems. It incorporates a bi-directional DC/DC converter with feed-forward control to achieve a complex conjugate match over a wide range of frequencies.  Analysis of the proposed system and simulation results are presented to verify validity of the proposed method. / Master of Science
110

SCALABLE NANO-MANUFACTURING OF INK-BASED HUMAN INTEGRATED ENERGY HARVESTING DEVICES

Hettiarachchige D Perera (12474705) 28 April 2022 (has links)
<p>  </p> <p>This masters thesis presents a literature review of widely used ink-based manufacturing techniques, ink-based materials used in energy harvesting. their preparation and applications in human-integrated energy harvesting devices. In addition, the challenges, and opportunities in this area of study is discussed. Lastly, the experimental methodology and results of a stencil printed PVA-gelatin composite ink based flexible triboelectric nanogenerator used for human-integrated energy harvesting is summarized.</p>

Page generated in 0.178 seconds