• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 48
  • 46
  • 39
  • 26
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 576
  • 576
  • 130
  • 123
  • 100
  • 98
  • 78
  • 71
  • 70
  • 58
  • 56
  • 56
  • 55
  • 50
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Multiple turbine wind power transfer system loss and efficiency analysis

Pusha, Ayana T. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A gearless hydraulic wind energy transfer system utilizes the hydraulic power transmission principles to integrate the energy of multiple wind turbines in a central power generation location. The gearless wind power transfer technology may replace the current energy harvesting system to reduce the cost of operation and increase the reliability of wind power generation. It also allows for the integration of multiple wind turbines to one central generation unit, unlike the traditional wind power generation with dedicated generator and gearbox. A Hydraulic Transmission (HT) can transmit high power and can operate over a wide range of torque-to-speed ratios, allowing efficient transmission of intermittent wind power. The torque to speed ratios illustrates the relationship between the torque and speed of a motor (or pump) from the moment of start to when full-load torque is reached at the manufacturer recommended rated speed. In this thesis, a gearless hydraulic wind energy harvesting and transfer system is mathematically modeled and verified by experimental results. The mathematical model is therefore required to consider the system dynamics and be used in control system development. Mathematical modeling also provided a method to determine the losses of the system as well as overall efficiency. The energy is harvested by a low speed-high torque wind turbine connected to a high fixed-displacement hydraulic pump, which is connected to hydraulic motors. Through mathematical modeling of the system, an enhanced understanding of the HTS through analysis was gained that lead to a highly efficient hydraulic energy transmission system. It was determined which factors significantly influenced the system operation and its efficiency more. It was also established how the overall system operated in a multiple wind turbine configuration. The quality of transferred power from the wind turbine to the generator is important to maintaining the systems power balance, frequency droop control in grid-connected applications, and to ensure that the maximum output power is obtained. A hydraulic transmission system can transfer large amounts of power and has more flexibility than a mechanical and electrical system. However high-pressure hydraulic systems have shown low efficiency in wind power transfer when interfaced with a single turbine to a ground-level generator. HT’s generally have acceptable efficiency at full load and drop efficiency as the loading changes, typically having a peak around 60%. The efficiency of a HT is dependent on several parameters including volumetric flow rate, rotational speed and torque at the pump shaft, and the pressure difference across the inlet and outlet of the hydraulic pump and motor. It has been demonstrated that using a central generation unit for a group of wind turbines and transferring the power of each turbine through hydraulic system increases the efficiency of the overall system versus one turbine to one central generation unit. The efficiency enhancement depends on the rotational speed of the hydraulic pumps. Therefore, it is proven that the multiple-turbine hydraulic power transfer system reaches higher efficiencies at lower rotational speeds. This suggests that the gearbox can be eliminated from the wind powertrains if multiple turbines are connected to the central generation unit. Computer simulations and experimental results are provided to quantify the efficiency enhancements obtained by adding the second wind turbine hydraulic pump to the system.
572

SCALABLE SPRAY DEPOSITION OF MICRO-AND NANOPARTICLES AND FABRICATION OF FUNCTIONAL COATINGS

Semih Akin (14193272) 01 December 2022 (has links)
<p>Micro- and nanoparticles (MNP) attract much attention owing to their unique properties, structural tunability, and wide range of practical applications. To deposit these important materials on surfaces for generating functional coatings, a variety of special delivery systems and coating/printing techniques have been explored. Herein, spray coating technique is a promising candidate to advance the field of nanotechnology due to its low-cost, high-deposition rate, manufacturing flexibility, and compatibility with roll-to-roll processing. Despite great advances, direct scalable spray writing of functional materials at high-spatial resolution through fine patterning without a need of vacuum and mask equipment still remains challenging. Addressing these limitations requires the development of efficient spray deposition techniques and novel manufacturing approaches to effectively fabricate functional coatings. To this end, this dissertation employs three different spray coating methods of (1) cold spray; (2) atomization-assisted supersonic spray, and (3) dual velocity regime spray to address the aforementioned limitations. A comprehensive set of coating materials, design principles, and operational settings for each spray system are tailored for rapid, direct, and sustainable deposition of MNP on various substrates. Besides, through the two-phase flow modeling, droplets dispersion and deposition characteristics were investigated under both subsonic and supersonic flow conditions to uncover the process-structure-property relationships of the established spray systems. Moreover, novel spray-based manufacturing approaches are developed to fabricate functional coatings in various applications, including (i) functional polymer metallization, (ii) printed flexible electronics, (iii) advanced thin-film nanocoating, (iv) laser direct writing, and (v) electronic textiles.</p>
573

Leveraging Multistability to Design Responsive, Adaptive, and Intelligent Mechanical Metamaterials

Aman Rajesh Thakkar (17600733) 19 December 2023 (has links)
<p dir="ltr">Structural instability, traditionally deemed undesirable in engineering, can be leveraged for beneficial outcomes through intelligent design. One notable instance is elastic buckling, often leading to structures with two stable equilibria (bistable). Connecting bistable elements to form multistable mechanical metamaterials can enable the discretization and offer tunability of mechanical properties without the need for continuous energy input.<i> </i>In this work, we study the physics of these multistable metamaterials and utilize their state and property alterations along with snap-through instabilities resulting from state change for engineering applications. These materials hold potential for diverse applications, including mechanical and thermo-mechanical defrosting, energy absorption, energy harvesting, and mechanical storage and computation.</p><p dir="ltr">Focusing on defrosting, we find that the energy-efficient mechanical method using embedded bistable structures in heat exchanger fins significantly outperforms the thermal methods. The combination of manufacturing methods, material choice, boundary conditions, and actuation methodologies is systematically investigated to enhance defrosting performance. A purely mechanical strategy is effective against solid, glaze-like ice accumulations; however, performance is substantially diminished for low-density frost. To address this limitation, we study frost formation on the angular shape morphing fins and subsequently introduce a thermo-mechanical defrosting strategy. This hybrid approach focuses on the partial phase transition of low-density frost to solid ice through thermal methods, followed by mechanical defrosting. We experimentally validate this approach on a multistable heat exchanger fin pack.</p><p dir="ltr">Recent advancements have led to a new paradigm of reusable energy-absorbing materials, known as Phase Transforming Cellular Materials (PXCM) that utilize multiple negative stiffness elements connected in series. We explore the feasibility of this multistable metamaterial as frequency up-conversion material and utilize these phase transformations for energy harvesting. We experimentally demonstrate the energy-harvesting capabilities of a phase-transforming unit-cell-spring configuration and investigate the potential of multicell PXCM as an energy harvesting material.</p><p dir="ltr">The evolution towards intelligent matter, or physical intelligence, in the context of mechanical metamaterials can be characterized into four distinct stages: static, responsive, adaptive, and intelligent mechanical metamaterials. In the pursuit of designing intelligent mechanical metamaterials, there has been a resurgence in the field of mechanical computing. We utilize multistable metamaterials to develop mechanical storage systems that encode memory via bistable state changes and decode it through a global stiffness readout. We establish upper bounds for maximum memory capacity in elastic bit blocks and propose an optimal stiffness distribution for unique and identifiable global states. Through both parallel and series configurations, we realize various logic gates, thereby enabling in-memory computation. We further extend this framework by incorporating viscoelastic mechano-bits, which mimic the decay of neuronal action potentials. This allows for temporal stiffness modulation and results in increased memory storage via non-abelian behavior, for which we define a fundamental time limit of detectability. Additionally, we investigate information entropy in both elastic and viscoelastic systems, showing that temporal neural coding schemes can extend the system’s entropy beyond conventional limits. This is experimentally validated and shown to not only enhance memory storage but also augment computational capabilities.</p><p dir="ltr">The work in this thesis establishes multistability as a key design principle for developing responsive, adaptive, and intelligent materials, opening new avenues for future research in the field of multistable metamaterials.</p>
574

[pt] TRANSFERÊNCIA ULTRASSÔNICA DE ENERGIA E DADOS ATRAVÉS DE CAMADAS DE METAL E FLUIDO UTILIZANDO MODULAÇÃO EM FREQUÊNCIA / [en] ULTRASONIC ENERGY AND DATA TRANSFER THROUGH METAL AND FLUID LAYERS USING FREQUENCY MODULATION

RAPHAEL BOTELHO PEREIRA 18 July 2023 (has links)
[pt] A necessidade de transmitir energia e dados através de barreiras metálicas tem sido cada vez maior em aplicações industriais, onde não é possível a penetração de cabos elétricos, ou o uso de ondas eletromagnéticas, tais como, por exemplo, em sistemas de sensoriamento de cimentação em poços de petróleo. Ondas acústicas podem ser uma solução para esse problema, porque não são afetadas pelo efeito gaiola de Faraday, além de possuírem baixa atenuação ao atravessarem metais. Diversos esforços foram feitos para realizar a transmissão de dados através de camadas metálicas, com abordagens que variam em composição do canal acústico, taxa de transmissão, transmissão simultânea de dados e energia e complexidade dos circuitos empregados; existe, porém, carência de trabalhos que envolvam camadas metal-fluído-metal. Este trabalho apresenta uma possível solução utilizando ondas acústicas como meio de transportar energia e dados em um canal composto de barreiras com duas camadas metálicas e uma de fluído. Aqui propõe-se uma inovadora técnica de controle automático de ganho e um melhor aproveitamento da largura de banda do canal acústico, que permite maior taxa de transmissão de dados. É ainda proposta uma técnica para controle dinâmico da portadora enviada ao lado passivo do sistema. Inicialmente, foi feita uma análise de um modelo numérico, baseado em trabalhos anteriores, fundamentado na propagação de ondas acústicas e baseado na analogia acustoelétrica. Em seguida, desenvolveu-se um sistema eletrônico para receber / transmitir energia e dados digitais, modulados em frequência, de um lado ao outro do sistema. Por fim, análises experimentais foram feitas utilizando como canal acústico, um conjunto de duas placas planas de aço (de 5 mm) separadas por uma camada de fluído (de 100 mm) e dois transdutores alinhados axialmente, realizando a transferência de energia e dados digitais modulados em frequência. O sistema foi capaz de realizar a transferência de dados a uma taxa de 19200 bps e simultaneamente uma transferência de energia de 66 mW, com essa energia foi possível alimentar o modulo eletrônico e um sensor de pressão e temperatura. Durante os testes foi constatado um aproveitamento de 5,5 por cento da energia aplicada ao canal, e foi possível atingir uma taxa de erro de bit de 5 por cento em um teste com 2 h e 30 min de duração, utilizando o canal acústico com camadas de múltiplos materiais propostos. O sistema de controle de portadora funcionou adequadamente, permitindo uma redução de consumo de até 53 por cento. O controle automático de ganho permitiu uma redução de 50 por cento na taxa de erro de decodificação. Demonstra-se, então, a viabilidade de tais sistemas de controle propostos, os quais podem ser úteis em casos onde existam variações nas características acústicas do canal em questão que, em conjunto com a transferência não intrusiva, pode prover solução para sistemas de sensoriamento. / [en] The need for energy and data transmission through metallic barriers is increasing in industrial applications, where the penetration of electrical waves or the use of electrical waves is not possible. An example of such a scenario is the monitoring of cementing in wellbore applications. Acoustic waves are promising to solve this problem, since they are not affected by the Faraday cage effect, in addition, they present low attenuation when propagating in metals. Several efforts have been made to carry out data transmission through metallic layers, with approaches that vary in composition of the acoustic channel, transmission speed, simultaneous transmission of data and energy and the complexity of the circuits used, but there is a lack of works involving metal-fluid-metal layers. This work presents a possible solution using acoustic waves as a mean of transporting energy and data in a channel composed of barriers with two metallic layers and one fluid layer. Here, it is proposed a novel technique for automatic gain control and better use of the available bandwidth of the acoustic channel, which allows higher data transmission speed. Also, a technique for dynamic control of the carrier sent to the passive side of the system is proposed. Initially, an analysis with a numerical model was made, following previous works, which is based on the propagation of acoustic waves and relying on the acoustoelectric analogy. Then, an electronic system was developed to receive/transmit power and digital data, frequency modulated, from one side of the system to the other. Finally, experimental analyzes were performed using as an acoustic channel, a set of two flat steel plates (5 mm) separated by a fluid layer (100 mm) and a pairs of axially aligned transducers, performing the energy transfer and frequency modulated digital data. The system was able to transfer data at a rate of 19200 bps and simultaneously a transfer of energy of 66 mW, with this energy it was possible to feed the inside block module and a pressure and temperature sensor. During the tests, it was verified that 5.5 per cent of the energy applied to the channel was used, and it a bit error rate down to of 5 per cent was reached in a test with 2 h and 30 min of duration, using the multi-layered acoustic. The automatic carrier control system worked as expected and allowed one to reduce energy consumption in 53 per cent. The automatic gain control allowed one to reduce the error rate in 50 per cent. These control systems prove the feasibility of the proposed system and further show the usefulness of the system in scenarios that are subject to variations in the acoustic characteristics of the channel.
575

Nanostructured thermoelectric kesterite Cu2ZnSnS4

Isotta, Eleonora 07 September 2021 (has links)
To support the growing global demand for energy, new sustainable solutions are needed both economically and environmentally. Thermoelectric waste heat recovery and energy harvesting could contribute by increasing industrial process efficiency, as well as powering stand-alone devices, microgenerators, and small body appliances.The structural complexity of quaternary chalcogenide materials provides an opportunity for engineering defects and disorder, to modify and possibly improve specific properties. Cu2ZnSnS4 (CZTS, often kesterite), valued for the abundance and non-toxicity of the raw materials, seems particularly suited to explore these possibilities, as it presents several structural defects and polymorphic phase transformations. The aim of this doctoral work is to systematically investigate the effects of structural polymorphism, disorder, and defects on the thermoelectric properties of CZTS, with particular emphasis to their physical origin. A remarkable case is the order-disorder transition of tetragonal CZTS, which is found responsible for a sharp enhancement in the Seebeck coefficient due to a flattening and degeneracy of the electronic energy bands. This effect, involving a randomization of Cu and Zn cations in certain crystallographic planes, is verified in bulk and thin film samples, and applications are proposed to exploit the reversible dependence of electronic properties on disorder. Low-temperature mechanical alloying is instead discovered stabilizing a novel polymorph of CZTS, which disordered cubic structure is studied in detail, and proposed deriving from sphalerite-ZnS. The total cation disorder in this compound provides an uncommon occurrence in thermoelectricity: a concurrent optimization of Seebeck coefficient, electrical and thermal conductivity. These findings, besides providing new and general understanding of CZTS, can cast light on profitable mechanisms to enhance the thermoelectric performance of semiconducting chalcogenides, as well as delineate alternative and fruitful applications.
576

Low Temperature Waste Energy Harvesting by Shape Memory Alloy Actuator

Hegana, Ashenafi B. 04 October 2016 (has links)
No description available.

Page generated in 0.4299 seconds