• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STUDY OF EXTENDED LIFE COOLANT WITH SUSPENDED CARBON NANOTUBES

Overturf, Logan Matthew 01 August 2011 (has links)
Utilizing an experimental facility which was prepared to conduct performance tests on heat exchangers; experiments were completed in an attempt to see verifiable improvements in overall heat transfer coefficient in engine coolant with nanoparticles suspended at different weight percentages. The different fluids tested were: base ELC (Extended Life Coolant), ELC with 0.002 wt% CNT (Carbon Nanotubes), ELC with 0.02 wt% CNT, ELC with 0.02 wt% MWNT's (Multiwalled Nanotubes) and water. The volume percents range from 0.00164 volume% to 0.0164 volume% which seemed quite small, but according to Caterpillar representatives, were the best concentration. These fluids were tested at standard flowrates which this type of heat exchanger would be used in as well as a higher air flowrate and lower coolant flowrates in an attempt to gather more verifiable data. Results were obtained regarding the change in heat transfer ability of engine coolant with suspended nanoparticles. For this system under these specific conditions, there was verifiably no increase in UA as nanoparticles were added to the coolant. The benefits of adding nanoparticles to engine coolant have potential to be great, but the cost of nanoparticles and difficulty keeping them suspended may outweigh any benefits obtainable in this type of set up.
2

Gas in engine cooling systems : occurrence, effects and mitigation

Woollen, Peter January 2013 (has links)
The presence of gas in engine liquid cooling systems can have severe consequences for engine efficiency and life. The presence of stagnant, trapped gases will result in cooling system hotspots, causing gallery wall degradation through thermal stresses, fatigue and eventual cracking. The presence of entrained, transient gases in the coolant flow will act to reduce its bulk thermal properties and the performance of the system s coolant pump; critically the liquid flow rate, which will severely affect heat transfer throughout the engine and its ancillaries. The hold-up of gas in the pump s impeller may cause the dynamic seal to run dry, without lubrication or cooling. This poses both an immediate failure threat should the seal overheat and rubber components melt and a long term failure threat from intermittent quench cooling, which causes deposit formation on sealing faces acting to abrade and reduce seal quality. Bubbles in the coolant flow will also act as nucleation sites for cavitation growth. This will reduce the Net Positive Suction Head available (NPSHA) in the coolant flow, exacerbating cavitation and its damaging effects in locations such as the cylinder cooling liners and the pump s impeller. This thesis has analysed the occurrence of trapped gas (air) during the coolant filling process, its behaviour and break-up at engine start, the two-phase character of the coolant flow these processes generate and the effects it has on coolant pump performance. Optical and parametric data has been acquired in each of these studies, providing an understanding of the physical processes occurring, key variables and a means of validating numerical (CFD) code of integral processes. From the fundamental understanding each study has provided design rules, guidelines and validated tools have been developed, helping cooling system designers minimise the occurrence of trapped air during coolant filling, promote its breakup at engine start and to minimise its negative effects in the centrifugal coolant pump. It was concluded that whilst ideally the prevention of cooling system gases should be achieved at source, they are often unavoidable. This is due to the cost implications of finding a cylinder head gasket capable of completely sealing in-cylinder combustion pressures, the regular use of nucleate boiling regimes for engine cooling and the need to design cooling channel geometries to cool engine components and not necessarily to avoid fill entrapped air. Using the provided rules and models, it may be ensured stagnant air is minimised at source and avoided whilst an engine is running. However, to abate the effects of entrained gases in the coolant pump through redesign is undesirable due to the negative effects such changes have on a pump s efficiency and cavitation characteristics. It was concluded that the best solution to entrained gases, unavoidable at source, is to remove them from the coolant flow entirely using phase separation device(s).
3

Kvantitativ analys av organiska syror i kylvätska / Quantitative analysis of organic acids in engine coolant

Henriksson, Emma, Holm, Martin January 2017 (has links)
Volvo Cars är ett välkänt företag som säljer bilar över hela världen. Idag skickar Volvo Cars sin kylvätska till leverantörer för analys. Processen är komplicerad och tar mycket tid. Det finns ett intresse hos Volvo Cars att själva kunna analysera kylvätskan. För att kunna göra detta krävs det att en metod som de kan använda för att analysera kylvätskan utvecklas. Examensarbetet syftar till att utveckla en metod som gör det möjligt att analysera koncentrationen av organiska syror i Volvos kylvätska. Analysen ska göras med hjälp av en High Performance Liquid Chromatography - HPLC. De organiska syrorna är inhibitorer som skyddar material i motorn från korrosion när det kommer i kontakt med kylvätskan. Metoden utvecklas i flera steg, det är viktigt att veta hur olika organiska syror kan analyseras med en HPLC. HPLC-analyser är mycket beroende av de intrumentella inställningarna. Inställningarna som ändrar när metoden utvecklas är pH, typ av kolonn, våglängd på detektorn, flödeshastighet i kolonnen, injektionsvolymen, sammansättning av eluent (lösningsmedel) och analystid. Kalibreringskurvor konstrueras för att sedan kunna användas i fortsatta studier. Tre av fem organiska syror som skulle analyseras var möjliga att analysera med två olika metoder. Den enda skillnaden mellan metoderna var våglängden på detektorn. En av de organiska syrorna hade en mer linjär kalibreringskurva vid en högre våglängd. / Volvo Cars is a well-known company and they are selling their cars all over the world. Today, Volvo Cars send their engine coolant to the supplier of engine coolant for analysis. This process is complicated and takes a lot of time. It is in the interest of Volvo Cars to be able to analyze the engine coolant themselves. In order to do that, a method where they can analyze the engine coolant must be developed. This exam work aim to develop a method where it is possible to analyze the concentration of organic acids in Volvo´s engine coolant with a High Performance Liquid Chromatography - HPLC. The organic acids are inhibitors that protect the materials in the engine from corrosion when in contact with the engine coolant. The method is developed in several steps. First it is important to know how different organic acids could be analyzed with an HPLC. HPLC-analysis is very dependent of the instrumental parameters. The parameters you change when developing a method are pH, kind of column, wavelength of the detector, kind of detector, flow rate in the column, injections volume, composition of the eluent (solvent) and, analysis time. Calibration curves are created and could be used as a reference in further analysis. Three of the five organic acids that were supposed to be analyzed were possible to analyze. Three organic acids were analyzed with one method and the two remaining organic acids with another method. The only difference between the methods is the wavelengths of the detector.

Page generated in 0.1932 seconds