• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 14
  • 12
  • 12
  • 11
  • 11
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estratégias para o gerenciamento da mistura ar combustí­vel aplicadas em motores flex. / Strategies for the air fuel mixture management applied to flex engines.

Novaes, Lucas Motta de 06 December 2018 (has links)
No presente trabalho, emprega-se a medida da concentração de etanol do combustível para efetuar correções estequiométricas de maneira direta e instantânea, a fim de eliminar o período necessário para adaptação a partir da medida do sensor de oxigênio (sonda lambda) em eventos de reabastecimento no veículo. Com o objetivo de assegurar a operação flex-fuel, foram empregados métodos para a regulação ar/combustível em malha fechada, realimentados por sensores de oxigênio (banda larga amplificada e banda estreita). O projeto foi implementado em uma ECU (Eletronic Control Unit) idealizada para desenvolvimento de rotinas de programa voltadas ao gerenciamento eletrônico para motores de combustão interna ciclo Otto, denominada Flex-ECU. A ETAS/Bosch Flex-ECU possui programação aplicada à ferramenta ASCET (Advanced Simulation and Control Engineering Tool), o qual trata-se de um código open source para sistemas embarcados de tempo real. Por fim, são exibidos resultados de controle, desempenho e eficiência do motor para diferentes composições de combustível comercializados para a frota de veículos leves em território nacional. Os experimentos revelam a dinâmica de funcionamento do controle A/C bicombustível e discute as suas principais características, com o objetivo de exemplificar métodos de otimização de sua eficiência. / In the present work, the ethanol fuel concentration is used to establish stoichiometric corrections in a direct and instantaneous manner, to eliminate the period necessary for adaptation, from the measurement of the oxygen sensor (lambda probe) in events of refueling. To ensure Flex-fuel operation, closed-loop air/fuel regulation methods were used, fed by oxygen sensors (amplified wide band and narrow band). The project was implemented in an ECU (Electronic Control Unit) designed for the development of code routines for electronic management of an Otto cycle internal combustion engine, labeled Flex-ECU. The ETAS / Bosch Flex-ECU has programming applied to the ASCET (Advanced Simulation and Control Engineering Tool) tool, which is an open source code for real time embedded systems. Finally, results of engine control, performance, and efficiency are presented for different fuel compositions available in Brazil for the fleet of light vehicles. The experiments show the dynamics of the operation of the bi-fuel A/C control and discusses its main characteristics, aiming to exemplify optimization methods of its efficiency.
12

Desenvolvimento de um gerenciador eletrônico para motores tricombustível. / Development of an electronic controller for tri-fuel engines.

Veiga, Michel Robert 10 September 2010 (has links)
O objetivo do desenvolvimento do projeto foi minimizar uma das principais desvantagens no uso do gás natural veicular, que é a perda de potência, e aumentar sua eficiência volumétrica através da construção de um circuito eletrônico capaz de gerenciar de forma eficiente a injeção do gás. O aumento do rendimento é obtido através do gerenciamento eficiente da mistura ar-combustível utilizando um sistema de malha fechada. O gerenciamento da relação de potência e economia é conseguido com o uso simultâneo de gás natural e o combustível líquido. Nos sistemas de conversão atuais e nos veículos originais a gás natural, a perda de potência é compensada desligando o sistema de gás e utilizando somente o combustível líquido, sendo esta seleção feita de forma manual na maioria dos sistemas de conversão e de forma automática no Fiat Siena tetrafuel, não possibilitando o uso simultâneo do gás com o combustível líquido. A exigência de potência é medida através do ângulo do pedal do acelerador. Quando a exigência de potência é baixa, o sistema opera apenas com gás. No momento em que há solicitação de potência intermediária, o sistema opera com diferentes proporções de etanol e gás. Na situação de solicitação de potência máxima, é utilizado apenas o combustível líquido. Foram feitas comparações entre o sistema convencional e o sistema proposto, através de ensaios dinamométricos, rodoviários e emissão de poluentes. O veículo Volkswagen Gol com seu sistema original utilizando somente etanol possui potência máxima de 64,06 cavalos, (47,77 Kilowatts) e consumo de 12,6 quilômetros por litro de etanol. Com o sistema convencional de gás natural aspirado, o consumo foi de 21 quilômetros por metro cúbico e a potência não ultrapassou 51,82 cavalos (38,64 Kilowatts), com o protótipo desenvolvido a eficiência volumétrica aumentou 25% com consumo de 26,4 quilômetros por metro cúbico. O gerenciamento de potência proporciona potências intermediárias acima de 51,82 cavalos (38,64 Kilowatts), até a potência máxima de 64,06 cavalos (47,77 Kilowatts) em situações que uma maior potência é requerida. O sistema desenvolvido proporciona o benefício da flexibilidade no abastecimento disponível nos sistemas atuais, com a flexibilidade na potência não disponível nos sistemas atuais. / This project intended to minimize one of the main disadvantages of using natural gas vehicles, which was the loss of power, and increase their volumetric efficiency by building an electronic circuit able to efficiently manage the gas injection. The increase in volumetric efficiency is obtained through the efficient management of air-fuel mixture using a closed loop system. The management of the power and economy ratio is achieved with the simultaneous use of natural gas and liquid fuel. In the current conversion systems and original vehicles that use natural gas, the power loss is compensated by turning off the gas system and using only the liquid fuel. This selection is done manually in most conversion systems, and automatically at Fiat Siena Tetrafuel, not allowing the simultaneous use of gas to liquid fuel. The demand for power is measured by the angle of the accelerator pedal. When the power demand is low, the system operates only with natural gas. When intermediate power is required, the system operates with different proportions of ethanol and natural gas. For maximum power, only ethanol is used. Comparisons were made between the conventional and the proposed system through dynamometer tests, road tests and emission analyses. The Volkswagen Gol with original system using only ethanol has a maximum power of 64.06 horses (47.77 Kilowatts) and consumption of 12.6 kilometers per liter of ethanol. With conventional aspirated natural gas system, the consumption was 21 km per cubic meter and the power did not exceed 51.82 horses (38.64 Kilowatts). With the prototype, volumetric efficiency increases by 25%, with consumption of 26.4 kilometers per cubic meter. The power management provides intermediate powers up to 51.82 horses (38.64 Kilowatts) until the maximum power of 64.06 horses (47.77 Kilowatts) in situations where more power is required. The developed system provides the benefit of refueling flexibility found in the original system, with power flexibility not available in original systems.
13

Desenvolvimento de um gerenciador eletrônico para motores tricombustível. / Development of an electronic controller for tri-fuel engines.

Michel Robert Veiga 10 September 2010 (has links)
O objetivo do desenvolvimento do projeto foi minimizar uma das principais desvantagens no uso do gás natural veicular, que é a perda de potência, e aumentar sua eficiência volumétrica através da construção de um circuito eletrônico capaz de gerenciar de forma eficiente a injeção do gás. O aumento do rendimento é obtido através do gerenciamento eficiente da mistura ar-combustível utilizando um sistema de malha fechada. O gerenciamento da relação de potência e economia é conseguido com o uso simultâneo de gás natural e o combustível líquido. Nos sistemas de conversão atuais e nos veículos originais a gás natural, a perda de potência é compensada desligando o sistema de gás e utilizando somente o combustível líquido, sendo esta seleção feita de forma manual na maioria dos sistemas de conversão e de forma automática no Fiat Siena tetrafuel, não possibilitando o uso simultâneo do gás com o combustível líquido. A exigência de potência é medida através do ângulo do pedal do acelerador. Quando a exigência de potência é baixa, o sistema opera apenas com gás. No momento em que há solicitação de potência intermediária, o sistema opera com diferentes proporções de etanol e gás. Na situação de solicitação de potência máxima, é utilizado apenas o combustível líquido. Foram feitas comparações entre o sistema convencional e o sistema proposto, através de ensaios dinamométricos, rodoviários e emissão de poluentes. O veículo Volkswagen Gol com seu sistema original utilizando somente etanol possui potência máxima de 64,06 cavalos, (47,77 Kilowatts) e consumo de 12,6 quilômetros por litro de etanol. Com o sistema convencional de gás natural aspirado, o consumo foi de 21 quilômetros por metro cúbico e a potência não ultrapassou 51,82 cavalos (38,64 Kilowatts), com o protótipo desenvolvido a eficiência volumétrica aumentou 25% com consumo de 26,4 quilômetros por metro cúbico. O gerenciamento de potência proporciona potências intermediárias acima de 51,82 cavalos (38,64 Kilowatts), até a potência máxima de 64,06 cavalos (47,77 Kilowatts) em situações que uma maior potência é requerida. O sistema desenvolvido proporciona o benefício da flexibilidade no abastecimento disponível nos sistemas atuais, com a flexibilidade na potência não disponível nos sistemas atuais. / This project intended to minimize one of the main disadvantages of using natural gas vehicles, which was the loss of power, and increase their volumetric efficiency by building an electronic circuit able to efficiently manage the gas injection. The increase in volumetric efficiency is obtained through the efficient management of air-fuel mixture using a closed loop system. The management of the power and economy ratio is achieved with the simultaneous use of natural gas and liquid fuel. In the current conversion systems and original vehicles that use natural gas, the power loss is compensated by turning off the gas system and using only the liquid fuel. This selection is done manually in most conversion systems, and automatically at Fiat Siena Tetrafuel, not allowing the simultaneous use of gas to liquid fuel. The demand for power is measured by the angle of the accelerator pedal. When the power demand is low, the system operates only with natural gas. When intermediate power is required, the system operates with different proportions of ethanol and natural gas. For maximum power, only ethanol is used. Comparisons were made between the conventional and the proposed system through dynamometer tests, road tests and emission analyses. The Volkswagen Gol with original system using only ethanol has a maximum power of 64.06 horses (47.77 Kilowatts) and consumption of 12.6 kilometers per liter of ethanol. With conventional aspirated natural gas system, the consumption was 21 km per cubic meter and the power did not exceed 51.82 horses (38.64 Kilowatts). With the prototype, volumetric efficiency increases by 25%, with consumption of 26.4 kilometers per cubic meter. The power management provides intermediate powers up to 51.82 horses (38.64 Kilowatts) until the maximum power of 64.06 horses (47.77 Kilowatts) in situations where more power is required. The developed system provides the benefit of refueling flexibility found in the original system, with power flexibility not available in original systems.
14

Evolução de uma unidade de gerenciamento eletrônico de um motor VW 2.0L e desenvolvimento de controle de cruzeiro: Projeto Otto IV / Enhancement of an electronic management unit for a VW 2.0L engine and development of cruise control: Otto IV Project.

Bruno César Fernandes Pereira 25 August 2017 (has links)
Com o passar do tempo, nota-se um aumento gradativo da demanda por veículos mais econômicos e que disponham de itens capazes de aumentar o conforto e a segurança. Citase, como exemplo, o controle de cruzeiro (Cruise Control) que, atualmente presente em diversos veículos, é responsável por controlar a velocidade do veículo de maneira autônoma, sem a necessidade de intervenção do condutor no pedal de aceleração, resultando em um aumento de conforto ao reduzir o esforço para dirigir, além de prover efetividade para manter a velocidade do veículo em torno de um valor desejado. Neste contexto, o presente trabalho apresenta o desenvolvimento de um controlador de cruzeiro para operar em um veículo modelo Volkswagen Polo Sedan 2.0L 2004, o qual não possui este recurso em seu estado de fábrica. Para a implementação deste recurso, o trabalho faz uso de uma unidade de gerenciamento eletrônico (conhecida também por Electronic Control Unit - ECU) desenvolvida em 2013, no âmbito do projeto Otto II (PEREIRA, 2013), para controle do motor presente no respectivo veículo, viabilizando, desta forma, a validação do controle de cruzeiro por meio de testes utilizando o veículo em um dinamômetro inercial. Entretanto, previamente ao projeto do controlador de cruzeiro, o presente trabalho teve como foco o aperfeiçoamento do funcionamento desta ECU, visando a sua evolução no que diz respeito ao estado da arte de unidades de gerenciamento eletrônico de motores. Para isto, em sua primeira fase, o trabalho realizou diversas melhorias nas malhas de controle já existentes no firmware de 2013, tais como controle de marcha lenta, controle da borboleta eletrônica e controle de partida. Ao mesmo tempo, novos recursos foram implementados em firmware: controle de torque, controle da mistura ar/combustível em malha fechada (sonda lambda), segurança na comunicação entre blocos da ECU, identificação de marcha, suporte para diagnóstico via OBD-II, dentre outros. Além destas atividades envolvendo desenvolvimento de firmware, o trabalho, ainda em sua primeira fase, promoveu o desenvolvimento de uma nova ferramenta de software que, além de ser capaz de monitorar diversos parâmetros da ECU em tempo real, integra diversas funções, tais como função de computador de bordo alternativo, opção para controle do motor através da simulação do pedal de aceleração, opção para alteração da rotação de marcha lenta e função para automatização do ensaio de identificação do veículo (tarefa necessária para o projeto do controlador de cruzeiro). / Over time, there is a gradual increase of the demand for economical vehicles equipped with items capable of increasing the comfort and safety. As an example, the Cruise Control, which is already available in several vehicles, is responsible to control the vehicle speed in an autonomous manner, without the driver intervention on the throttle pedal. As a result, a greater comfort is achieved by reducing the effort to drive, besides providing effectiveness to keep the vehicle speed around a desired value. In this context, this project aims the development of a Cruise Control applied to a vehicle Volkswagen Polo Sedan 2.0L 2004, in which such resource is not available. To implement this resource, the project uses an electronic engine management unit (also known as Electronic Control Unit - ECU) developed in 2013 by the Otto II project (PEREIRA, 2013). This ECU is responsible to control the engine of the respective vehicle, which allows the Cruise Control validation through a set of tests performed with the vehicle on an inertial dynamometer. However, prior to the Cruise Control design, this project focused on the ECU operation enhancement, in order to achieve the state of the art in electronic engine management units. For this goal, the project, during its first phase, performed several improvements on the control algorithms already existing in the firmware developed in 2013, such as idle speed control, electronic throttle valve control and engine starting control. At the same time, new features were fully implemented in firmware: torque control, closed loop air/fuel ratio control (lambda control), safety for the communication among ECU blocks, gear identification, support to OBD-II diagnostic, among others. In addition to the firmware development activities, the project, still in its first phase, developed a new software tool capable of monitoring several ECU parameters in real time, besides providing many functions, such as alternative board computer, an option to control the engine by simulating the throttle pedal, an option to change the idle speed and a function to automate the system identification test (task required for the Cruise Control design).
15

Evolução de uma unidade de gerenciamento eletrônico de um motor VW 2.0L e desenvolvimento de controle de cruzeiro: Projeto Otto IV / Enhancement of an electronic management unit for a VW 2.0L engine and development of cruise control: Otto IV Project.

Pereira, Bruno César Fernandes 25 August 2017 (has links)
Com o passar do tempo, nota-se um aumento gradativo da demanda por veículos mais econômicos e que disponham de itens capazes de aumentar o conforto e a segurança. Citase, como exemplo, o controle de cruzeiro (Cruise Control) que, atualmente presente em diversos veículos, é responsável por controlar a velocidade do veículo de maneira autônoma, sem a necessidade de intervenção do condutor no pedal de aceleração, resultando em um aumento de conforto ao reduzir o esforço para dirigir, além de prover efetividade para manter a velocidade do veículo em torno de um valor desejado. Neste contexto, o presente trabalho apresenta o desenvolvimento de um controlador de cruzeiro para operar em um veículo modelo Volkswagen Polo Sedan 2.0L 2004, o qual não possui este recurso em seu estado de fábrica. Para a implementação deste recurso, o trabalho faz uso de uma unidade de gerenciamento eletrônico (conhecida também por Electronic Control Unit - ECU) desenvolvida em 2013, no âmbito do projeto Otto II (PEREIRA, 2013), para controle do motor presente no respectivo veículo, viabilizando, desta forma, a validação do controle de cruzeiro por meio de testes utilizando o veículo em um dinamômetro inercial. Entretanto, previamente ao projeto do controlador de cruzeiro, o presente trabalho teve como foco o aperfeiçoamento do funcionamento desta ECU, visando a sua evolução no que diz respeito ao estado da arte de unidades de gerenciamento eletrônico de motores. Para isto, em sua primeira fase, o trabalho realizou diversas melhorias nas malhas de controle já existentes no firmware de 2013, tais como controle de marcha lenta, controle da borboleta eletrônica e controle de partida. Ao mesmo tempo, novos recursos foram implementados em firmware: controle de torque, controle da mistura ar/combustível em malha fechada (sonda lambda), segurança na comunicação entre blocos da ECU, identificação de marcha, suporte para diagnóstico via OBD-II, dentre outros. Além destas atividades envolvendo desenvolvimento de firmware, o trabalho, ainda em sua primeira fase, promoveu o desenvolvimento de uma nova ferramenta de software que, além de ser capaz de monitorar diversos parâmetros da ECU em tempo real, integra diversas funções, tais como função de computador de bordo alternativo, opção para controle do motor através da simulação do pedal de aceleração, opção para alteração da rotação de marcha lenta e função para automatização do ensaio de identificação do veículo (tarefa necessária para o projeto do controlador de cruzeiro). / Over time, there is a gradual increase of the demand for economical vehicles equipped with items capable of increasing the comfort and safety. As an example, the Cruise Control, which is already available in several vehicles, is responsible to control the vehicle speed in an autonomous manner, without the driver intervention on the throttle pedal. As a result, a greater comfort is achieved by reducing the effort to drive, besides providing effectiveness to keep the vehicle speed around a desired value. In this context, this project aims the development of a Cruise Control applied to a vehicle Volkswagen Polo Sedan 2.0L 2004, in which such resource is not available. To implement this resource, the project uses an electronic engine management unit (also known as Electronic Control Unit - ECU) developed in 2013 by the Otto II project (PEREIRA, 2013). This ECU is responsible to control the engine of the respective vehicle, which allows the Cruise Control validation through a set of tests performed with the vehicle on an inertial dynamometer. However, prior to the Cruise Control design, this project focused on the ECU operation enhancement, in order to achieve the state of the art in electronic engine management units. For this goal, the project, during its first phase, performed several improvements on the control algorithms already existing in the firmware developed in 2013, such as idle speed control, electronic throttle valve control and engine starting control. At the same time, new features were fully implemented in firmware: torque control, closed loop air/fuel ratio control (lambda control), safety for the communication among ECU blocks, gear identification, support to OBD-II diagnostic, among others. In addition to the firmware development activities, the project, still in its first phase, developed a new software tool capable of monitoring several ECU parameters in real time, besides providing many functions, such as alternative board computer, an option to control the engine by simulating the throttle pedal, an option to change the idle speed and a function to automate the system identification test (task required for the Cruise Control design).
16

Entwicklung und Abstimmung eines Momentenmodells für eine Otto-DI-Motorsteuerung

Pietzsch, Albrecht 25 January 2018 (has links) (PDF)
Die Zulieferindustrie im Automobilbereich sieht sich heutzutage hochkomplexen Systemen bei der Entwicklung von Verbrennungsmotoren gegenüber. Applikationssteuergeräte mit passendem Datenstand werden selten von Fahrzeugherstellern an Dritte für die Entwicklung am Verbrennungsmotor bereitgestellt. Eine Alternative bieten Prototypensteuergeräte mit individuellen Softwarepaketen, die in ihrer Funktionalität auf die Bedürfnisse der Entwicklungsingenieure zugeschnitten sind. Die FlexECU von ETAS ist ein gutes Beispiel für solch ein offenes, kostengünstiges und seriennahes Prototypensteuergerät. Hauptbestandteil dieser Arbeit ist die Entwicklung und Integration eines Momentemodells in eine vorhandene Motorsteuerungssoftware sowie die Applikation dieses Modells am Motorprüfstand. Die Motivation für die Erweiterung der jetzigen Motorsteuerungssoftware um das Momentemodell ist, den Entwicklungsingenieuren ein möglichst seriennahes Steuergeräteumfeld bei der Erarbeitung innovativer verbrauchs- und schadstoffoptimierter Konzepte für den Verbrennungsmotor bereitzustellen. Bei der Evaluation wird gezeigt, dass die Integration und die Funktion des Momentenmodells grundsätzlich gelungen ist. Diese Arbeit bildet den Grundstein für eine umfangreiche Entwicklung, die noch einige Zeit in Anspruch nehmen wird, bis eine voll umfängliche abgesicherte Software geschaffen ist. / Nowadays, the automotive supplier industry is confronted with highly complex systems for the development of internal combustion engines. Vehicle manufacturers very rarely provide third party developers with their engine control units with calibration access and matching description and data files for internal combustion engines. An alternative are prototype control units with individual software packages, which in their functionality are adapted to the needs of development engineers. One example for such an open, cost-effective and field-proven control system development platform is FlexECU from ETAS. The essential part of this thesis is the development and integration of a torque-based system structure for an existing engine management system and the calibration of this model on an engine test bench. The motivation for this improvement is to provide development engineers with a control unit environment as close to serial as possible for the development of consumption- and emission-optimized concepts for internal combustion engines. The evaluation shows that integration as well as functionality of the torque-based system structure has generally been achieved. This thesis lays the foundations for an extensive development of this system – although the creation of a fully verified and validated software will still take some time.
17

Entwicklung und Abstimmung eines Momentenmodells für eine Otto-DI-Motorsteuerung

Pietzsch, Albrecht 18 December 2017 (has links)
Die Zulieferindustrie im Automobilbereich sieht sich heutzutage hochkomplexen Systemen bei der Entwicklung von Verbrennungsmotoren gegenüber. Applikationssteuergeräte mit passendem Datenstand werden selten von Fahrzeugherstellern an Dritte für die Entwicklung am Verbrennungsmotor bereitgestellt. Eine Alternative bieten Prototypensteuergeräte mit individuellen Softwarepaketen, die in ihrer Funktionalität auf die Bedürfnisse der Entwicklungsingenieure zugeschnitten sind. Die FlexECU von ETAS ist ein gutes Beispiel für solch ein offenes, kostengünstiges und seriennahes Prototypensteuergerät. Hauptbestandteil dieser Arbeit ist die Entwicklung und Integration eines Momentemodells in eine vorhandene Motorsteuerungssoftware sowie die Applikation dieses Modells am Motorprüfstand. Die Motivation für die Erweiterung der jetzigen Motorsteuerungssoftware um das Momentemodell ist, den Entwicklungsingenieuren ein möglichst seriennahes Steuergeräteumfeld bei der Erarbeitung innovativer verbrauchs- und schadstoffoptimierter Konzepte für den Verbrennungsmotor bereitzustellen. Bei der Evaluation wird gezeigt, dass die Integration und die Funktion des Momentenmodells grundsätzlich gelungen ist. Diese Arbeit bildet den Grundstein für eine umfangreiche Entwicklung, die noch einige Zeit in Anspruch nehmen wird, bis eine voll umfängliche abgesicherte Software geschaffen ist.:Abkürzungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Verzeichnis der Formelzeichen und Symbole . . . . . . . . . . . . . . . II Variablenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII 1. Einleitung 1 1.1. Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2. Zielsetzung und Aufbau der Arbeit . . . . . . . . . . . . . . . . . . .1 2. Stand der Technik 4 2.1. Steuerung und Regelung von Ottomotoren . . . . . . . . . . . . 4 2.2. Architektur Motorsteuerungssoftware . . . . . . . . . . . . . . . . 7 2.3. Das Momentenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3. Theoretische Grundlagen 15 3.1. Innermotorische Drehmomentenerzeugung . . . . . . . . . . .15 3.2. Eingriffsmöglichkeiten und deren Geschwindigkeit . . . . . .18 4. Modellierung des Momentenmodells 20 4.1. Entwicklungsumgebung . . . . . . . . . . . . . . . . . . . . . . . . . .20 4.2. Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5. Versuch 34 5.1. Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2. Versuchsträger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 5.2.1. ETAS FlexECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2.2. Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2.3. Versuchsmotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.4. Motorprüfstand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 5.3. Applikationssoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 5.3.1. ETAS INCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 5.3.2. ETAS MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.3. ETAS ASCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 6. Vorstellung der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . .45 6.1. Ergebnisse der Applikation des Momentemodells . . . . . . 45 6.2. Evaluierung der Drehmomentumsetzung des Momentenmodells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3. Evaluierung der Untersysteme des Momentenmodells . . 62 7. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Literatur- und Quellenverzeichnis . . . . . . . . . . . . . . . . . . . . . 75 Eidesstattliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Anlagenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 / Nowadays, the automotive supplier industry is confronted with highly complex systems for the development of internal combustion engines. Vehicle manufacturers very rarely provide third party developers with their engine control units with calibration access and matching description and data files for internal combustion engines. An alternative are prototype control units with individual software packages, which in their functionality are adapted to the needs of development engineers. One example for such an open, cost-effective and field-proven control system development platform is FlexECU from ETAS. The essential part of this thesis is the development and integration of a torque-based system structure for an existing engine management system and the calibration of this model on an engine test bench. The motivation for this improvement is to provide development engineers with a control unit environment as close to serial as possible for the development of consumption- and emission-optimized concepts for internal combustion engines. The evaluation shows that integration as well as functionality of the torque-based system structure has generally been achieved. This thesis lays the foundations for an extensive development of this system – although the creation of a fully verified and validated software will still take some time.:Abkürzungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Verzeichnis der Formelzeichen und Symbole . . . . . . . . . . . . . . . II Variablenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII 1. Einleitung 1 1.1. Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2. Zielsetzung und Aufbau der Arbeit . . . . . . . . . . . . . . . . . . .1 2. Stand der Technik 4 2.1. Steuerung und Regelung von Ottomotoren . . . . . . . . . . . . 4 2.2. Architektur Motorsteuerungssoftware . . . . . . . . . . . . . . . . 7 2.3. Das Momentenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3. Theoretische Grundlagen 15 3.1. Innermotorische Drehmomentenerzeugung . . . . . . . . . . .15 3.2. Eingriffsmöglichkeiten und deren Geschwindigkeit . . . . . .18 4. Modellierung des Momentenmodells 20 4.1. Entwicklungsumgebung . . . . . . . . . . . . . . . . . . . . . . . . . .20 4.2. Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5. Versuch 34 5.1. Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2. Versuchsträger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 5.2.1. ETAS FlexECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2.2. Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2.3. Versuchsmotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.4. Motorprüfstand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 5.3. Applikationssoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 5.3.1. ETAS INCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 5.3.2. ETAS MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.3. ETAS ASCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 6. Vorstellung der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . .45 6.1. Ergebnisse der Applikation des Momentemodells . . . . . . 45 6.2. Evaluierung der Drehmomentumsetzung des Momentenmodells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3. Evaluierung der Untersysteme des Momentenmodells . . 62 7. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Literatur- und Quellenverzeichnis . . . . . . . . . . . . . . . . . . . . . 75 Eidesstattliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Anlagenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Page generated in 0.0668 seconds