• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • Tagged with
  • 27
  • 27
  • 27
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Linear and non-linear mechanistic modeling and simulation of the formation of carbon adsorbents

Argoti Caicedo, Alvaro Andres January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Liang T. Fan / Walter P. Walawender Jr / Carbon adsorbents, namely, activated carbons and carbon molecular sieves, can be variously applied in the purification and separation of gaseous and liquid mixtures, e.g., in the separation of nitrogen or oxygen from air; often, carbon adsorbents also serve as catalysts or catalyst supports. The formation of carbon adsorbents entails the modification of the original internal surfaces of carbonaceous substrates by resorting to a variety of chemical or physical methods, thereby augmenting the carbonaceous substrates' adsorbing capacity. The formation of carbon adsorbents proceeds randomly, which is mainly attributable to the discrete nature, mesoscopic sizes, and irregular shapes of the substrates utilized as well as to their intricate internal surface configuration. Moreover, any process of carbon-adsorbent formation may fluctuate increasingly severely with time. It is desirable that such a process involving discrete and mesoscopic entities undergoing complex motion and behavior be explored by means of the statistical framework or a probabilistic paradigm. This work aims at probabilistic analysis, modeling, and simulation of the formation of carbon adsorbents on the basis of mechanistic rate expressions. Specifically, the current work has formulated a set of linear and non-linear models of varied complexity; derived the governing equations of the models formulated; obtained the analytical solutions of the governing equations whenever possible; simulated one of the models by the Monte Carlo method; and validated the results of solution and simulation in light of the available experimental data for carbon-adsorbent formation from carbonaceous substrates, e.g., biomass or coal, or simulated data obtained by sampling them from a probability distribution. It is expected that the results from this work will be useful in establishing manufacturing processes for carbon adsorbents. For instance, they can be adopted in planning bench-scale or pilot-scale experiments; preliminary design and economic analysis of production facilities; and devising the strategies for operating and controlling such facilities.
22

Environmental assessment for bisphenol-a and polycarbonate

Chow, Jimmy T. January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / Polycarbonate products have been used extensively world wide for decades because they are lightweight, shatter-resistant and considered to be safe. Polycarbonate is a thermoplastic that is used to make compact discs, phones, lenses, and food contact products such as water bottles, baby bottles and food storage containers. For more than half century, there has been interest in polycarbonate (PC) products and the monomer bisphenol-A (BPA) because BPA can leach from food polycarbonate containers. The environmental fate for both chemicals in air, water and soil is of interest, also. To understand the fate of polycarbonate, its main degradation pathways, main degradation mechanisms and main products are reviewed. These pathways are thermal degradation, photo-degradation and hydrolysis under different conditions. Furthermore, key topics like PC degradation kinetics and PC chemical resistance are part of this comprehensive discussion. The biodegradation of BPA has been thoroughly studied. About twelve lab methods for environmental fate are summarized and reviewed to understand the “big picture” for BPA degradation. This includes screening tests, which assess the ready and inherent degradability, to simulation tests for surface waters, soils and wastewater treatment systems. The testing of all methods is examined under conditions close to the real environment fate. Furthermore, the fate distribution for BPA based on the Equilibrium Criterion Model (EQC) model is reviewed. Extensive research on polycarbonate and BPA has been conducted in the last fifty years. During this time, both chemicals have been studied and tested by industry and government agencies. The pharmacological test results from major studies indicate that consumer exposure to BPA at concentrations normally experienced in daily living does not pose a risk to human health. On the other hand, minor toxicological studies indicate potential risks to human health. Research on health and safety are continuing.
23

The application of tetrakis(dimethylamino)ethylene chemiluminescence in characterization of the surface properties of metal oxides and reversed microemulsion systems

Huang, Chien-Chang January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / To characterize surface properties by current techniques, metal oxides typically have to be pre-treated at high temperature to remove surface absorbents. Therefore, a new low temperature method which can provide information on the surface chemistry is desired. In this work, the surface properties of metal oxide samples were studied by tetrakis(dimethylamino)ethylene (TDE) chemiluminescence (CL). This chemiluminescent method was also employed in probing the properties of reversed microemulsions. It was found that the emission intensity vs. reaction time curve (I[subscript]t) of catalyzed TDE CL on MgO was affected by the distributions and types of surface hydroxyl groups. Isolated hydroxyls with lower coordination were found to have higher catalytic reactivity for the emission of TDE CL. Although hydrogen bonded hydroxyls also catalyze the TDE oxidation reaction, the influence on the light emission was negative. Because the properties of surface hydroxyls are associated with specific orientations of adjacent ions, information on surface hydroxyls can provide information about some general surface characteristics of a metal oxide. When characterizing surface hydroxyls on Al[subscript]2O[subscript]3 by TDE CL, it was found that the catalytic reactivity of isolated hydroxyl groups is strongly associated with the stretching frequency of isolated hydroxyl. The stretching frequency of an isolated hydroxyl group is related to the modification of the adjacent ions and the coordination of the isolated hydroxyl. The results showed that the blue-shifts in the stretching frequencies of isolated hydroxyls led to increases in the catalytic reactivity of Al[subscript]2O[subscript]3 surfaces for the emission of TDE CL. TDE CL was further applied in characterizing the surfaces of other metal oxides and chemically grafted Al[subscript]2O[subscript]3. The results indicated that the isolated hydroxyl groups with fewer adjacent ions likely have higher affinity for the binding of grafting agents. Higher emission intensities were obtained from catalyzed TDE CL on metal oxides featuring higher percentages of isolated hydroxyls. The determination of a surfactant’s critical micellar concentration was accomplished by measuring the decay rate of the emission of TDE CL in a reversed microemulsion system. In this study, the CMC values of non-ionic and ionic surfactants were measured in different non-polar solvents.
24

Photocatalytic oxidation of volatile organic compounds for indoor air applications

Bayless, Lynette Vera January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / Photocatalytic oxidation (PCO) is a promising and emerging technique in controlling indoor air contaminants, including volatile organic compounds (VOCs). It has broad air cleaning and deodorization applications in indoor environments ranging from residential and office buildings to healthcare and nursing facilities as well as spacecrafts, aircraft cabins and clean rooms in the agricultural and food industry. Numerous studies have been conducted to improve the effectiveness and performance of this technology. These include development of new configurations, energy-efficient catalysts and other parameters to control the process. However, only limited research has been conducted under realistic indoor environmental conditions. One of the most recent developments in photocatalysis is the synthesis of 2% C- and V-doped TiO[subscript]2, which is active under both dark and visible light conditions. However, like most research conducted in photocatalysis, the study on the reactivity of this catalyst has been performed only under laboratory conditions. This study investigated the possible application of the novel C and V co-doped TiO[subscript]2 in cleaning indoor air. Mathematical modeling and simulation techniques were employed to assess the potential use of some of the promising systems that utilize the catalyst (i.e., packed bed and thin films) as well as the effect of mass transfer limitations in the degradation of acetaldehyde, one of the VOCs that can be found in offices, residential buildings and other facilities.
25

Sol-gel synthesis of vanadium phosphorous oxides for the partial oxidation of n-butane to maleic anhydride

Salazar, Juan Manuel January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / Vanadium phosphorous oxide (VPO) is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO[4subscript][dot in middle of line]0.5H[2subscript]O (the precursor) followed by in-situ activation to produce (VO)[2subscript]P[2subscript]O[subscript]7 (the active phase). These catalysts considerably improve their performance when prepared as nanostructured materials and this study discusses an alternative synthesis method based on sol-gel techniques capable of producing nanostructured VPO. Vanadium(V) triisopropoxide oxide was reacted with ortho-phosphoric acid in tetrahydrofuran (THF). This procedure yielded a gel of VOPO[4subscript] with interlayer entrapped molecules. The gels were dried at high pressure in an autoclave with controlled excess and composition of THF-2-propanol mixtures. The surface area of the obtained materials was between 50 and 120 m[2superscript]/g. Alcohol produced by the alkoxide hydrolysis and incorporated along with the excess solvent reduced the vanadium during the drying step. Therefore, after the autoclave drying, the solid VOPO[4subscript] was converted to the precursor; and, non-agglomerated platelets were observed. Use of additional 2-propanol increased the amount of precursor in the powder but reduced its surface area and increased its crystallite size. In general, sol-gel prepared catalysts were significantly more selective than the traditionally prepared materials, and it is suggested that the small crystallite size obtained in the precursor influenced the crystallite size of the active phase increasing their selectivity towards maleic anhydride. The evaluation of these materials as catalysts for the partial oxidation of n-butane at 673 K under mixtures of 1.5% n-butane in air yielded selectivity of 40% at 50% conversion compared to 25% selectivity at similar level of conversion produced by the traditionally prepared catalysts. Variations in the catalytic performance are attributed to observed polymorphism in the activated materials, which is evidenced by remarkable differences in the intrinsic activity. All precursors and catalysts were characterized by IR, XRD, SEM and BET, and the products of the catalytic tests were analyzed by GC.
26

Sol-gel synthesized nanomaterials for environmental applications

Yang, Xiangxin January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Larry E. Erickson / Over the past decade, nanomaterials have been the subject of enormous interest. Their defining characteristic is a very small size in the range of 1-100 nm. Due to their nanometer size, nanomaterials are known to have unique mechanical, thermal, biological, optical and chemical properties, together with the potential for wide-ranging industrial applications. Here, we synthesized nanocrystalline metal oxides through the sol-gel process and used these materials as desulfurization adsorbents and photocatalysts. Deep desulfurization of fuels has received more and more attention worldwide, not only because of health and environmental consideration but also due to the need for producing ultra-low-sulfur fuels, which can only be achieved under severe operating conditions at high cost using hydrodesulfurization (HDS). Consequently, development of new and affordable deep desulfurization processes to satisfy the decreasing limit of sulfur content in fuels is a big challenge. Sol-gel derived Cu/Al[subscript]2O[subscript]3 and Zn/Al[subscript]2O[subscript]3 adsorbents have been demonstrated to be effective in the removal of thiophene from a model solution. Results showed that Cu[superscript]+ was the active site and thermal treatment under vacuum was critical for Zn/Al[subscript]2O[subscript]3 since a defective, less crystalline spinel led to stronger interaction between zinc ions and thiophene molecules in the adsorption process. The kinetic study suggested that most of the adsorption occurred in the first 30 min, and adsorption equilibrium was attained after 1.5 h. Both adsorbents showed good regenerative property. TiO2 is considered the most promising photocatalyst due to its high efficiency, chemical stability, non-toxicity, and low cost for degradation and complete mineralization of organic pollutants. However, the use of TiO[subscript]2 is impaired because it requires ultraviolet (UV) activation ([Lambda]<387 nm). The shift of optical response of TiO[subscript]2 from the UV to the visible light region would have a profound positive effect on the efficient use of solar energy in photocatalytic reactions. We shifted the optical response of TiO[subscript]2 and improved the photocatalytic efficiency through size modification and transition metal ion and nonmetal atom doping. Experimental results showed that C and V co-doped TiO[subscript]2 catalysts had much higher activity than commercial P25 TiO[subscript]2 towards the degradation of acetaldehyde under visible light irradiation. For the first time, we reported that activities were comparable in the dark and under visible light irradiation for co-doped TiO[subscript]2 with 2.0 wt% V. C and N co-doped TiO[subscript]2 exhibited higher activity for the degradation of methylene blue than pure TiO[subscript]2 under visible light and UV irradiation. Possible mechanisms were discussed based on the experimental results.
27

Mechanism of gas cell stability in bread making

Sroan, Baninder Singh January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / Finlay I. MacRitchie / Expansion of dough and hence breadmaking performance is postulated to depend on a dual mechanism for stabilization of inflating gas bubbles. Two flours were used in this study, one from the wheat variety Jagger (Jagger) and the other from a composite of soft wheat varieties (soft). The primary stabilizing mechanism is due to the gluten-starch matrix surrounding the bubble. The secondary mechanism operates when gas bubbles come into close contact during later proofing and early baking. When discontinuities occur in the gluten-starch matrix surrounding gas bubbles, thin liquid lamellae stabilized by adsorbed surface active compounds, provide a secondary stabilization. A key parameter in the primary stabilizing dough film is thought to be the property of strain hardening. Jagger flour gave higher test-bake loaf volume than soft wheat flour and higher strain hardening index for dough. Rheological properties of doughs were varied by addition of protein fractions prepared by pH fractionation. Fractions were characterized by SE-HPLC and MALLS. The molecular weight distribution (MWD) of fractions progressively shifted to higher values as the pH of fractionations decreased. Mixograph peak development time paralleled the MWD. However, the strain hardening index and the test-bake loaf volume increased with increasing MWD up to a point (optimum), after which they declined. At a given strain rate the behavior at the optimum appeared to result from slippage of the maximum number of statistical segments between entanglements, without disrupting the entangled network of polymeric proteins. Shift of MWD to MW higher than the optimum results in a stronger network with reduced slippage through entanglement nodes, whereas a shift to lower MWs will decrease the strength of the network due to less number of entanglements per chain. In order to study the secondary stabilizing mechanism, different lipid fractions were added incrementally to the defatted flours. No effects were observed on the rheological properties of the dough. However, large effects on the loaf volume were measured. The additives used were the total flour lipid and its polar and non polar fractions and the fatty acids palmitic, linoleic and myristic. Polar lipids and palmitic acid had positive or little effect on loaf volume respectively. Non polar lipid, linoleic and myristic acids had negative effects on loaf volume. 1 The different effects of the lipid fractions are thought to be related to the type of monolayer that is formed. Polar lipid and palmitic acid form condensed monolayers at the air/water interface whereas non polar lipid, linoleic and myristic acids form expanded monolayers.

Page generated in 0.0891 seconds