• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 12
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The effectiveness of alfalfa, nutrient model, and vegetative filter strips in reduction of nonpoint source pollution

Sullivan, Bailey Ann January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Philip L. Barnes / Water quality in the United States needs to be improved. Currently, 42% (39% of rivers and streams, 45% of lakes and reservoirs) of monitored surface water is considered impaired, indicating that it is no longer suitable for its designated uses such as drinking, recreation, habitat, food supply, agriculture, and ground water recharge (USEPA, 2000, Carpenter et al., 1998). Nonpoint source pollution can be associated with animal manure. This project focuses on two sources of nonpoint source pollution. The first source is runoff from soils that have been enriched in nutrients (nitrogen and phosphorus) by manure application. This project evaluates how effective Alfalfa is at removal of nitrogen and phosphorus from nutrient enriched soils. It also evaluates the use of USDA’s Plant Nutrient model in association with nutrient management plans to prevent enrichment of soils. It was determined that Alfalfa is effective in reduction of nitrogen in soils; however, it was not feasible as a stand alone practice to remediate phosphorus. The use of USDA’s Plant Nutrient model indicated that Corn for silage is the most effective crop for reduction of soil phosphorus while alfalfa and the yields produced in 2004 was the most effective in reduction nitrogen. However, the model tends to underestimate soil nutrient uptake, so it is important to have soil tests conducted periodically to prevent nutrient deficiencies. The second source of nonpoint pollution discussed is runoff from animal feeding operations. This paper evaluates the effects of grass filter strips in prevention of pollution transport off of animal feeding operations. It was determined that filter strips with a ratio of runoff area to filter area of 1:2 is the minimum ratio to effectively prevent nonpoint source pollution.
12

SWAT bacteria sub-model evaluation and application

Parajuli, Prem B. January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Kyle R. Mankin / The overall goal of this study was to evaluate and apply the Soil and Water Assessment Tool (SWAT) model for fecal bacteria modeling. Methods were developed to characterize fecal coliform bacteria (FCB) from livestock, human, and wildlife sources to use as input in the model. Model sensitivity to predict FCB concentration was evaluated for the model parameters and input parameters using both SWAT 2000 and 2005 versions. Sensitivity of input parameters generally, ranked as Bacteria concentration ≥ TBACT > Wildlife source loads > Livestock stocking rate ≥ Livestock manure production rate > BACTKDQ for SWAT 2000 whereas it was ranked as BACTKDQ > TBACT > Bacteria concentration > WDLPQ > WDLPS for SWAT 2005. Sensitivity of model and input parameters were found changed from SWAT 2000. The SWAT (2005) model was calibrated and validated for daily flow, sediment, and fecal bacteria concentration using one year of measured data (January to December, 2004). The SWAT model predicted results with poor to very good agreement when compared with measured data with coefficient of determination (R2) and Nash-Sutcliffe Efficiency Index (E) range of 0.10 to 0.89 for daily flows, sediment, total phosphorus, total nitrogen and total FCB concentration. More extensive in-stream data are needed for more comprehensive model assessment. The SWAT model (2005) was evaluated for source-specific FCB modeling using three years (2004-2006) of observed modified deterministic probability of bacteria source tracking (BST) data. The FCB sources were modeled with three combinations (livestock and human, livestock and wildlife, wildlife and human) and each single source to evaluate the source-specific FCB concentrations. The SWAT model determined poor to good agreement for the combined source of FCB (R2, E range from -2.92 to 0.71) but determined generally decreased agreement for each single source of bacteria (R2, E range from -5.03 to 0.39) potentially due to BST uncertainty, spatial variability and source characterization. The SWAT model identified critical sub-watersheds in the watershed where implementing vegetative filter strips (VFS) could be most effective to abate fecal bacteria pollution. The targeting method of VFS application to the watershed sub-basins was found to be more effective in reducing both FCB (60% vs. 42%) and sediment yield (63% vs. 33%) as compared to a random approach. The FCB source characterization methods for modeling developed in this study are general and have the potential to be extended to other watersheds. The results of this study demonstrate that the SWAT model can be used to characterize the distribution of bacteria sources within a bacteria impaired watershed and assist with developing total maximum daily loads (TMDLs) and watershed restoration strategies.
13

Phenol removal from saturated porous media using horseradish peroxidase mediated oxidative polymerization process

Kim, Wongee January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Alok Bhandari / Aquifers are frequently contaminated by phenolic compounds from spills, leaking underground storage tanks, or landfills. These compounds can be toxic to a variety of organisms including humans. Their disposal is restricted in many countries with strict limits for acceptable concentrations in drinking water. Phenols that are chlorinated have significantly greater toxicity and are resistant to aerobic biodegradation. Enzyme-mediated in situ stabilization has been advocated as an approach for the treatment of phenolic compounds in soils and groundwater. This research investigated the applicability of a luminol-based chemiluminescence assay to monitor transport of horseradish peroxidase (HRP) enzyme in saturated porous media. The chemiluminescence assay was optimized by varying solution conditions such as the concentration of luminol, p-iodophenol, hydrogen peroxide, ionic strength and pH. All assay components were found to affect the maximum chemiluminescene intensity. The study also evaluated the ability of HRP to mediate the removal of phenol from solution by catalyzing its oxidative polymerization in simulated aquifer conditions. HRP behaved as a conservative tracer in the column packed with Ottawa sand. The concentration of phenol in the column effluent was found to decrease by nearly 90% in the presence of HRP and H2O2 in the continuous flow system. HRP mediated oxidative polymerization of phenols resulted in the production of soluble and insoluble oligomeric products. Modification of porous media caused by the deposition of phenol polymerization products was studied and the impact of media modification on subsequent transport of phenolic contaminants was evaluated using 2,4-dichlorophenol (2,4-DCP) as a probe solute. The pore volume of the porous media was reduced due to the deposition of insoluble phenolic oligomers. The transport behavior of 2,4-DCP showed that the contaminant was retarded in the modified porous media.
14

Development of a vortex generating flume for the removal of phosphorus from waste streams

McDonald, Russ R January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry A. Glasgow / Feedlots, animal production facilities, and agricultural lands are point and non-point sources for nutrient enrichment of surrounding waterways and result in human enhanced eutrophication. Artificial elevation and increased enrichment from animal wastes, fertilizer, and runoff greatly increase the speed of this natural process and leads to degraded water quality, algae blooms, and fish kills. Phosphorous is typically the limiting nutrient for plant growth, and thus is the main focus of this paper. Phosphates enable excessive and choking plant growth that lead to depleted dissolved oxygen and excessive decaying plant matter, subsequently damaging the aquatic ecosystem. In order to provide an inexpensive and feasible solution to minimize phosphate eutrophication, a passive, vortex generating flume has been proposed to provide the necessary mixing for the removal of phosphorus from waste waters. Preliminary tests with dye tracers and electrolyte pulse injections have been conducted to model the flow characteristics and determine the residence time under a variety of flow conditions, angle of inclination and flow rate. The flume was modeled by two methods: four continuously stirred tank reactors (CSTRs) in series and as four CSTRs in series operating in parallel with a plug flow reactor (PFR). The hydraulic model fit a total of five parameters to the experimental data: Residence time, the inlet concentrations of the electrolyte pulse tracer, and the injection times of the tracer to both types of reactors. The kinetic model was built based on data collected from a different study of swine lagoons using magnesium chloride to precipitate phosphorus as the mineral struvite. The precipitation kinetics were modeled using first order and irreversible reaction and incorporated into the hydraulic model. The vortex generating flume provided an operating space that sufficiently removed phosphorus from the waste stream. Future work will include pilot scale testing of the model using waste streams and the investigation of a scour to minimize solid formation in the flume.
15

Stabilization of enzymatically polymerized 2,4 dichlorophenol in model subsurface geomaterials

Palomo, Monica January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Alok Bhandari / Human activities generate large amounts of chlorinated phenolic chemicals that are often introduced into the soil environment during pesticide and insecticide application, industrial releases, and accidental spills. For example, 2,4-dichlorophenol (DCP), a derivative of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) can been found in soil within 24 hours of 2,4- D application. Horseradish peroxidase (HRP)-mediated polymerization has been proposed as an approach to remediate soils and groundwater contaminated by phenolic pollutants. Treatment with HRP results in the transformation of phenols into polyphenolic oligomers that sorb strongly or precipitate on soils surfaces. Although HRP-mediated chlorophenol stabilization has been studied extensively in surface soils, very limited scientific data is available that supports the application of this technology in subsurface materials. Hence, the focus of this study was to evaluate sorption and binding of DCP and products of HRP-mediated polymerization of DCP to model geosorbents representing subsurface geomaterials. These sorbents included two humin-mineral geomaterials and one mineral geosorbent derived from surface soils. Soil-water phase distribution of total solute in the HRP-amended systems was observed to reach equilibrium within 7 days in woodland humin-mineral soil (WHM), and within 1 day in agricultural humin-mineral (AHM) and model mineral geomaterials. For all the geomaterials used, water extraction data indicated the development of contact time-dependent resistance to extraction/dissolution of soil-associated DCP and DPP. Solute associated with WHM geomaterial was higher at the end of the study than that associated with AHM. Contact time increased DCP stabilization at all initial aqueous DCP concentrations studied. Results of this study suggest that DCP stabilization in organic geosorbents results from a combination of sorption and cross-coupling of DCP and precipitation of DPP; in inorganic soils, precipitation of DPP macromolecules is the dominant process. HRP-mediated stabilization of DCP in soils was effective and independent of the solution ionic concentration. The amount of DCP stabilized in the mineral soil was comparable to that stabilized in humin-mineral geomaterials. The research reported in this dissertation demosntrates the potential of HRP enzyme to stabilize DCP in subsurface geomaterials under variable contaminant and salt concentrations, thereby restricting its transport in the environment.
16

Experimental analysis of particulate movement in a large Eddy Simulation Chamber

Padilla, Angelina Marianna January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Mohammad H. Hosni / Millions of people travel by commercial aircraft each year. The close proximity of passengers aboard an airplane leads to one of the primary reasons that air quality in an aircraft cabin is of interest. In recent years there have been multiple reported instances of people contracting illnesses after being aboard an aircraft for an extended period of time. In order to better understand air quality in an aircraft cabin, an experimental study of particulate transport in a half cabin model of a Boeing 767 was performed. In the study, both 3[Mu]m and 10[Mu]m particles were tested separately by injecting them into the cabin through a vertical tube, 609.6 mm (24 in) above the floor, at a single location on the centerline of the half cabin test section. Resulting particulate concentrations were measured at five locations along the centerline of the half cabin test section. It was found that for the 3[Mu]m particles, the normalized concentration was about one for all of the locations except directly above the injection site. Therefore, the concentrations were approximately the same as the well-mixed concentration, where the well-mixed concentration is the concentration in the test cabin if the test cabin is uniformly mixed. For the same test conditions, the normalized concentrations for the 10[Mu]m particles were well below one, around 0.1. Several more concentration measurements using the 10[Mu]m particles were taken at the same five locations, both on and off the centerline, and for different particle injection and cabin pressure conditions. The concentration results using a diffuser cone to inject the 10[Mu]m particles into the test cabin and a neutral cabin pressure were higher than the results found using the straight injection tube, but they were not very repeatable. After pressurizing the cabin to slightly above ambient pressure and using the diffuser cone, the resulting average normalized particle concentrations along the centerline were found to be between 0.4 and 1.5 and repeatable within the estimated measurement uncertainty. Therefore, it appears that the 3[Mu]m particles follow the airflow in the test cabin well, but it is not clear if the 10[Mu]m particles do as well.
17

Ecological implications for sustainable stormwater systems in the tallgrass prairie region

Culbertson, Trisha L. January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Stacy L. Hutchinson / Urban stormwater is one of the leading causes of water quality impairment and stream channel degradation in the United States. In an effort to address the negative effects of stormwater runoff on receiving aquatic systems, Best Management Practices for stormwater, including ecologically-designed stormwater systems, are becoming more common across the urban landscape. Throughout eastern Kansas and the rest of the Midwestern United States, prairie grasses are beginning to receive attention for their potential to enhance infiltration within these systems. However, the function of vegetated stormwater systems and the influence of factors such as vegetation age on infiltration and system performance are not well understood because monitoring data for these systems is limited. When performance data is collected, it often pertains only to the hydraulic and water quality aspects of the system but neglects any assessment of the integrity of the ecosystem functions on which the system's performance is dependent. The objective of this study was to address the need for an assessment tool that considers the ecological integrity, or health, of ecologically-designed stormwater systems, as well as to fill the gap in the literature regarding the function of ecologically-designed stormwater systems in the tallgrass prairie region. Since many of the eco-based stormwater practices in the region rely upon the establishment of native prairie grasses to enhance infiltration on the site, the specific focus of this study was to gain a better understanding of infiltration processes in ecologically-designed systems and the extent of our ability to regain these processes through prairie restoration in previously disturbed urban sites. To address these objectives, two stormwater systems at different stages of vegetative maturity were examined. In general, ecosystem health scores were higher for the more mature system and could be used to guide future management decisions at both sites. Results from the hydraulic analysis indicate the function of the system may improve over the course of the growing season, but statistical relationships between system age and infiltration rate could not be established.
18

Potential climate change impacts on hydrologic regimes in northeast Kansas

Siebenmorgen, Christopher B. January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Kyle R. Douglas-Mankin / The Great Plains once encompassed 160 million hectares of grassland in the central United States. In the last several decades, conversion of grassland to urban and agricultural production areas has caused significant increases in runoff and erosion. Past attempts to slow this hydrologic system degradation have shown success, but climate change could once again significantly alter the hydrology. The Intergovernmental Panel on Climate Change (IPCC) studies the state of knowledge pertaining to climate change. The IPCC has developed four possible future scenarios (A1, A2, B1 and B2). The output temperature and precipitation data for Northeast Kansas from fifteen A2 General Circulation Models (GCMs) were analyzed in this study. This analysis showed that future temperature increases are consistent among the GCMs. On the other hand, precipitation projections varied greatly among GCMs both on annual and monthly scales. It is clear that the results of a hydrologic study will vary depending on which GCM is used to generate future climate data. To overcome this difficulty, a way to take all GCMs into account in a hydrologic analysis is needed. Separate methods were used to develop three groups of scenarios from the output of fifteen A2 GCMs. Using a stochastic weather generator, WINDS, monthly adjustments for future temperature and precipitation were applied to actual statistics from the 1961 – 1990 to generate 105 years of data for each climate scenario. The SWAT model was used to simulate watershed processes for each scenario. The streamflow output was analyzed with the Indicators of Hydrologic Alteration program, which calculated multiple hydrologic indices that were then compared back to a baseline scenario. This analysis showed that large changes in projected annual precipitation caused significant hydrologic alteration. Similar alterations were obtained using scenarios with minimal annual precipitation change. This was accomplished with seasonal shifts in precipitation, or by significantly increasing annual temperature. One scenario showing an increase in spring precipitation accompanied by a decrease in summer precipitation caused an increase in both flood and drought events for the study area. The results of this study show that climate change has the potential to alter hydrologic regimes in Northeast Kansas.
19

Cattle feedlot dust – laser diffraction analysis of size distribution and estimation of emissions from unpaved roads and wind erosion

Gonzales, Howell B. January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Ronaldo G. Maghirang / Large cattle feedlots emit considerable amounts of particulate matter (PM), including TSP (total suspended particulates), PM[subscript]10 (PM with equivalent aerodynamic diameter of 10 μm or less), and PM[subscript]2.5 (PM with equivalent aerodynamic diameter of 2.5 μm or less). Particulate emissions result from pen surface disturbance by cattle hoof action, vehicle traffic on unpaved roads and alleyways, and wind erosion. Research is needed to determine concentrations of various size fractions, size distribution, and emission rates from various sources in feedlots. This research was conducted to measure particle size distribution using laser diffraction method and estimate emissions from unpaved roads and wind erosion. Particle size distribution and concentrations of PM[subscript]10 and PM[subscript]2.5 at a commercial cattle feedlot in Kansas (Feedlot 1) were measured over a 2-yr period. The feedlot had a capacity of 30,000 head and total pen area of 50 ha and was equipped with a sprinkler system for dust control. Collocated low-volume samplers for TSP, PM[subscript]10, and PM[subscript]2.5 were used to measure concentrations of TSP, PM[subscript]10, and PM[subscript]2.5 at the upwind and downwind edges of the feedlot. Dust samples that were collected by TSP samplers were analyzed with a laser diffraction analyzer to determine particle size distribution. Particle size distribution at the downwind edge of the feedlot was also measured with micro-orifice uniform deposit impactor (MOUDI). The laser diffraction method and MOUDI did not differ significantly in mean geometric mean diameter (13.7 vs. 13.0 μm) but differed in mean geometric standard deviation (2.9 vs. 2.3). From laser diffraction and TSP data, PM[subscript]10 and PM[subscript]2.5 concentrations were also calculated and were not significantly different from those measured by low-volume PM[subscript]10 and PM[subscript]2.5 samplers (122 vs. 131 μg/m[superscript]3 for PM[subscript]10; 26 vs. 35 μg/m[superscript]3 for PM[subscript]2.5). Both PM[subscript]10 and PM[subscript]2.5 fractions decreased as pen surface moisture contents increased, while the PM[subscript]2.5/PM[subscript]10 ratio did not change much with pen surface moisture content. Published emission models were used to estimate PM[subscript]10 emissions from unpaved roads and wind erosion at Feedlot 1 and another nearby feedlot (Feedlot 2). Feedlot 2 had a capacity of 30,000 head, total pen surface area of 59 ha, and used water trucks for dust control. Estimated PM[subscript]10 emissions from unpaved roads and wind erosion were less than 20% of total PM[subscript]10 emissions obtained from inverse dispersion modeling. Further research is needed to establish the applicability of published emission estimation models for cattle feedlots.
20

Laboratory and field investigation of chlorinated solvents remediation in soil and groundwater

Santharam, Sathishkumar January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Larry E. Erickson / Chlorinated solvents are the second most ubiquitous contaminants, next to petroleum hydrocarbons, and many are carcinogens. Tetrachloroethylene or perchloroethene (PCE) has been employed extensively in the dry cleaning industry and carbon tetrachloride (CT) has been used as a fumigant in grain storage facilities. In this work, remediation feasibility studies were conducted by mesocosm experiments; a chamber was divided into six channels and filled with soil, and plants were grown on top. Each channel was fed with contaminated water near the bottom and collected at the outlet, simulating groundwater flow conditions. The contaminants were introduced starting from March 12, 2004. PCE was introduced at a concentration of about 2 mg/L ([similar to]12 [Mu]moles/L) in three channels, two of them with alfalfa plants and the other with grass. CT was introduced at a concentration of about 2 mg/L ([similar to]13 [Mu]moles/L) in the other three channels, two of them with alfalfa plants and the other with grass. After the system had attained steady state, the concentrations of PCE and CT at inlet and outlet were monitored and the amount of PCE and CT disappearing in the saturated zone was studied. Since no degradation products were found at the outlet after about 100 days, one channel-each for PCE and CT (with alfalfa) was made anaerobic by adding one liter of 0.2 % glucose solution. The glucose solution was fed once every month starting from July 1, 2004 and continued until February 2005. From October 1, 2004, one liter of 0.1 % emulsified soy oil methyl esters (SOME) was fed to two other channels (with alfalfa), one exposed to PCE and another exposed to CT. The SOME addition dates were the same as that for glucose. The outlet liquid of the channel fed with PCE and SOME started to contain some of the degradation compounds of PCE; however, the extent of degradation was not as great as that of the glucose fed channel. No degradation compounds were observed in the outlet solution of the channel (grass grown on top) in which no carbon and energy supplements were added. Similar trend was observed in the CT fed channels also. KB-1, a commercially available microbial culture (a consortium of dehalococcoides) that degrades dichloroethene (DCE), was added through the inlet of the PCE fed channels, but this did not lead to sufficient conversion of DCE. Addition of KB-1 at well 3, located approximately in the middle of the channel, had a greater impact in the degradation of DCE, in both glucose and SOME amended channels, compared to addition at the inlet. KB-1 culture added to the channel was active even 155 days later, suggesting that there is sustainable growth of KB-1 when provided with suitable conditions and substrates. A pilot field study was conducted for remediation of a tetrachloroethylene (PCE) contaminated site at Manhattan, KS. The aquifer in the pilot study area has two distinct zones, termed shallow zone and deep zone, with groundwater velocities of about 0.3 m/day and 0.1 m/day. Prior to the pilot study, PCE concentration in groundwater at the pilot study area was about 15 mg/L (ppm) in the deep zone and 1 mg/L in the shallow zone. Nutrient solution comprising soy oil methyl esters (SOME), lactate, yeast extract and glucose was added in the pilot study area for biostimulation, on August 18, 2005. Potassium bromide (KBr) was added to the nutrient solution as a tracer. PCE was converted to DCE under these conditions. To carry out complete degradation of PCE, KB-1, a consortium of Dehalococcoides, and a second dose of nutrient solution were added on October 13, 2005. After addition of KB-1, both PCE and DCE concentrations decreased. Nutrients were again injected on March 3, 2006 (with KBr) and on August 1, 2006. The total chlorinated ethenes (CEs) have decreased by about 80 % in the pilot study area due to bioremediation. Biodegradation of CEs continued for a long time (several months) after the addition of nutrients. The insoluble SOME may be retained at the feeding area and provide a long time source of electron donors. Biostimulation and bioaugmentation of PCE contaminated soil and groundwater was evaluated in the laboratory and this technique was implemented successfully in the pilot field study. Modeling of the tracer study was performed using an advection-dispersion equation (ADE) and traditional residence time distribution (RTD) methods. The dispersion coefficient, groundwater velocity and hydraulic conductivity were estimated from the experimental data. The groundwater velocities vary from 1.5 cm/d to 10 cm/d in the deep zone and 15 cm/d to 40 cm/d in the shallow zone. The velocities estimated from the 2004 tracer study and 2005 tracer study were higher compared to the velocity estimated from the 2006 tracer study, most likely because of microbial growth and product formation that reduced the hydraulic conductivity. Based on data collected from several wells the hydrologic parameter values obtained from tracer studies appear to vary spatially.

Page generated in 0.1098 seconds