• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 12
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Alternative futures for the Northern Flint Hills: scenarios provided by hydrologic modeling

Burkitt, J. Beau January 1900 (has links)
Master of Arts / Department of Geography / John A. Harrington Jr / Environmental degradation is a major concern in agricultural landscapes. Innovative tools and methods will be necessary to identify and deal with the ongoing environmental impacts of past and present agricultural practices. The use of scenarios in environmental modeling is one way to address these concerns. Recently a group of researchers devised a framework for creating future land cover scenarios for two physiographic regions in Iowa. Based on that work, a suite of scenarios were created for Antelope Creek watershed in the Northern Flint Hills of Kansas. The Antelope Creek scenarios represent conditions pre Euro-American settlement, present day, increased intensification of agricultural production, enhancement of water quality, and enhancement of biodiversity. These scenarios were then modeled using the Soil and Water Assessment Tool (SWAT). Additional model runs were completed to compare SSURGO and STATSGO soil datasets. Results indicated that reductions in discharge, total suspended sediment and various nitrogen and phosphorus loads could be achieved by implementing modest changes to agricultural management practices. Results also indicated that a higher detail soil dataset such as SSURGO lead to slightly higher loads than with STATSGO data.
22

Phreatophytes in southwest Kansas used as a tool for predicting hydrologic properties

Ahring, Trevor S. January 1900 (has links)
Master of Science / Department of Civil Engineering / David R. Steward / The Ogallala Aquifer is a supply of water for several municipalities in western Kansas, as well as an irrigation source for local farmers. Since the 1950’s, when the aquifer started to be pumped for irrigation, the region has seen steady declines of the groundwater table. These declines have reduced stream flow in the Arkansas and Cimarrron Rivers, and caused a redistribution of riparian phreatophytes. This thesis studies this redistribution of phreatophytes, and develops statistical relationships relating a phreatophyte’s location to depth to groundwater, increase in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine tree locations on predevelopment and post-development aerial photography. These locations were mapped using ArcGIS, and ArcAEM was used to model groundwater flow in six riparian regions taking root uptake into account. It was found that once the depth to groundwater becomes greater than about 3 m, tree population will decrease as depth to water increases. Trees were located within 700 m of the river. Areas with a dense tree population (>10% tree cover) occurred where the average depth to water ranged from 0.24-1.4 m. Areas with moderate tree density (5-10% tree cover) corresponded to an average depth to water ranging from 2.1-19 m. Areas with a low tree density (<5% tree cover) corresponded to an average depth to water ranging from 11-28 m. It was found that phreatophytes have a high likelihood of growing on hydrologic soil group A and a low likelihood of growing on hydrologic soil group B. The number of trees located on hydrologic soil group D was what would be statistically expected if tree location were independent of soil type. It was also found that tree locations could be used as an indicator of good hydraulic connectivity between surface water and groundwater. This information can be used to help guide future installation of monitoring networks and expand research projects from central Kansas to western Kansas.
23

Analysis of a rapid soil erosion assessment tool

Bussen, Patrick January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Stacy L. Hutchinson / Soil erosion is a serious problem resulting in degradation of soil systems and nonpoint source (NPS) pollution of water resources. Concentrated overland flow is the primary transport mechanism for many NPS pollutants including soil, and locating areas where sheet flow transitions into concentrated flow is useful for assessing the potential for soil erosion. The ability to predict areas where overland flow transitions to concentrated flow and soil erosion potential is high assists land managers in implementing best management practices (BMPs) to reduce soil erosion and NPS. An erosion model, called the nLS model, was developed to identify transitional overland flow regions. The model is based on the kinematic wave overland flow theory and uses Manning’s n values, flow length, and slope as inputs to determine where overland flow transitions to sheet flow and soil erosion potential increases. Currently, the model has only been tested and validated for watersheds within Kansas. In order to assess model uncertainties and evaluate the model’s applicability to other regions, a sensitivity analysis on key input parameters was conducted. To assess model operations, several sensitivity analyses were performed on model inputs, including digital elevation models (DEMs) and landuse/landcover data (LULC). The impact of slope was assessed using two methods. First, by modifying the DEMs in a stepwise fashion from flatter to steeper terrains, and second, by modifying the elevation of each DEM cell based on the associated elevation error. To assess difficulties that might arise from the parameterization of surface roughness, LULC classes were assigned Manning’s n values within the suggested range using a Monte Carlo simulation. In addition, the critical threshold value used for locating erosion potential sites was modified, and alternative model calculations were used to assess the potential for improving model accuracy. Finally, the model was run using data from multiple sites, including two study areas in Hawaii and two in Kansas. The outputs for each site were analyzed in an attempt to identify any trends caused by site characteristics. Results from this study showed that the nLS model was sensitive to all of the inputs. Modifying the Manning’s roughness coefficient significantly altered the final nLS values and shifted the critical threshold points, especially in areas of the upper watershed. Changes in the slope value modified the nLS model outputs in a predictable manner, but there was some variability, especially in areas with lower slope values. In addition, discrepancies in the DEM, which may be present due to measurement or processing error, were shown to significantly alter the flow paths of a watershed. These findings suggest that accurate roughness coefficients and LULC data are especially important for regions with a steeper topography, and accurate elevation data is important for regions with lower slope values. The results also suggest that the threshold value for the model plays a vital role in locating potential soil erosion sites, and adjustments to this value could possibly be used as a method for calibrating the nLS model. Finally, the alternative model calculations used in this study did not significantly improve the accuracy of the nLS model, so the existing model is sufficient for obtaining accurate nLS estimates. The information gained from this study can improve the assessment of soil erosion processes due to concentrated overland flow. By successfully implementing a land management program that makes use of the nLS models, it should be possible to improve BMP placement and design, helping to improve water and soil quality.
24

Environmental assessment for bisphenol-a and polycarbonate

Chow, Jimmy T. January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / Polycarbonate products have been used extensively world wide for decades because they are lightweight, shatter-resistant and considered to be safe. Polycarbonate is a thermoplastic that is used to make compact discs, phones, lenses, and food contact products such as water bottles, baby bottles and food storage containers. For more than half century, there has been interest in polycarbonate (PC) products and the monomer bisphenol-A (BPA) because BPA can leach from food polycarbonate containers. The environmental fate for both chemicals in air, water and soil is of interest, also. To understand the fate of polycarbonate, its main degradation pathways, main degradation mechanisms and main products are reviewed. These pathways are thermal degradation, photo-degradation and hydrolysis under different conditions. Furthermore, key topics like PC degradation kinetics and PC chemical resistance are part of this comprehensive discussion. The biodegradation of BPA has been thoroughly studied. About twelve lab methods for environmental fate are summarized and reviewed to understand the “big picture” for BPA degradation. This includes screening tests, which assess the ready and inherent degradability, to simulation tests for surface waters, soils and wastewater treatment systems. The testing of all methods is examined under conditions close to the real environment fate. Furthermore, the fate distribution for BPA based on the Equilibrium Criterion Model (EQC) model is reviewed. Extensive research on polycarbonate and BPA has been conducted in the last fifty years. During this time, both chemicals have been studied and tested by industry and government agencies. The pharmacological test results from major studies indicate that consumer exposure to BPA at concentrations normally experienced in daily living does not pose a risk to human health. On the other hand, minor toxicological studies indicate potential risks to human health. Research on health and safety are continuing.
25

Analyzing effects of low water fords on stream stability at Fort Riley, Kansas

Malinga, Gilbert Aporu January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / James M. Steichen / Military maneuvers involve effectively moving soldiers and equipment across training lands, and this often involves crossing streams. Fording of streams by military vehicles poses a potential for degradation of stream habitats through change of bank angle or excess shear of stream banks and the resultant generation of excessive quantities of sediment, possibly exceeding Total Maximum Daily Loads (TMDL) limits for water quality downstream. This study examines the impact of low water fords on stability of six stream reaches at Fort Riley. Streams with constructed low water fords were mapped and classified according to Rosgen Stream Classification System (1996). Results indicate that some of these streams exhibit some level of instability, which includes bed form changes, accelerated stream bank erosion and backwater pool formation in the vicinity of stream crossings. Poorly constructed fords may act as dams disrupting the transport of sediment along the stream reaches, posing a potential shift in stream equilibrium. Another factor contributing to stream instability is sediment generated from upland areas and routed through approach roads leading to stream crossing sites. The sediment deposited into streams at these crossing locations is a water quality concern, and again poses the potential of disrupting stream equilibrium. Field observations indicate that poorly located stream crossings can alter the direction of stream flow, causing bank erosion on areas immediately below stream crossings. This demonstrates the importance of locating stream crossings on stable locations along a stream reach. Some of the stream reaches also show signs of success ional change. These stream changes have direct implications on the low water fords on Fort Riley. As a result of these stream changes, there will be need to constantly modify the designs and construction techniques of the low water fords in order to accommodate changes in stream dimensions, pattern and profile. Finally, criteria for site selection, design and construction of low water fords are discussed.
26

An optical sensor for in-stream monitoring of suspended sediment concentration

Zhang, Yali January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Naiqian Zhang / Suspended sediment concentration (SSC) in water is one of the most important parameters to evaluate water quality. Monitoring SSC provides important information on determining sediment transport for soil erosion research and soil/water conservation practices. Sediment mass transported at a given time can be assessed by simultaneous SSC and water flow velocity measurements. Fouling, including bio-fouling, has damaging impact on optical SSC measurements over the long term. In this study, an inexpensive, real-time, self-cleaning, optical sediment and flow velocity sensor was developed. Laboratory experiments were conducted on a previously designed SSC sensor. A light modulation algorithm was designed to reduce the influence of ambient light, especially sunlight, on measurement accuracy. Statistical models to predict SSC based on measured light intensities were established and compared with neural network models. The statistical analysis showed that soil texture played an important role in SSC measurement accuracy while the designed sensor was capable of reducing the effect of water color on sensor performance. Neural-network models can further remove the influence of soil texture type on SSC measurement. The sensor design was simplified based on a stepwise selection analysis. Long-term field experiments were conducted in Kansas and Georgia to evaluate the sensor performance, the effect of fouling, including bio-fouling, on sensor lenses, and the effect of temperature on the measurement. Methods of removing the fouling effect through data correction were developed. Results indicated that the designed optical SSC sensor was capable of providing rapid response to SSC fluctuations in water flow. Temperature of the water body has an insignificant impact on SSC measurement. In order to reduce fouling, an air-blast cleaning mechanism was integrated into the optical sediment sensor. Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials, and to verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that air-blast cleaning mechanism was capable of reducing clay/silt fouling on sensor signals. The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions. An air pressure drop test was conducted on the hose carrying pressurized air. Results showed negligible pressure drop.A flow velocity measurement function based on the cross-correlation principle was integrated into the optical sediment sensor. An experiment was conducted in laboratory to examine the sensor performance on velocity measurement using a closed circulation system. A solution of blue colorant, Brilliant Blue FCF, was used as an artificial source to absorb light emitted by LEDs in the sensor and the signal variation patterns were measured. The results indicated that the cross-correlation-based velocity sensor was capable of measuring water flow velocity within in a certain velocity range using the dye injection method.
27

Minimizing the number of collectors to measure uniformity from center pivot systems

Pragada, Siva Ramakrishna January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Gary A. Clark / This report presents the methods to determine the minimum number of collectors to accurately measure the coefficient of uniformity and the average depth of applied water from fixed plate and moving plate center pivot sprinkler irrigation systems. This research conducted an uniformity analysis and an average depth analysis. In the uniformity analysis, catch can collected data from center pivot system tests were divided into base sets of 60 data points. Each base set was further divided into subsets of 30 data points each. T-tests were used to compare the CU values from the base data sets with CU values from each of the subsets. In the average depth analysis, center pivot system catch can data were divided into base sets with 20 data points. Each base data set was divided into 19 subsets. The 1st subset was generated by removing an exterior data point from the base set which was identified by number 1. The 2nd subset was generated by removing other exterior data point (identified by number 20) from the previously generated subset (1st subset). In this manner, a total of 19 subsets for each base set were generated by removing an exterior point from each previous subset. The percent difference (change) in average depth of each subset from the value of the average depth of the base set was calculated. The percent difference in average depth was then plotted against the associated number of collectors. Both analyses documented that a decrease in the number of collectors from the original density of collectors is acceptable to determine the uniformity and averaged depth of applied water from center pivot spans. Results from the uniformity analysis demonstrated that 20 collectors were as effective as 60 collectors to quantify the uniformity of a system. The depth analysis showed that 9 to 12 collectors may be needed to measure the average depth of a system (or a portion of a system) to within 5% to 7.5% of the true value.
28

Photocatalytic oxidation of volatile organic compounds for indoor air applications

Bayless, Lynette Vera January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / Photocatalytic oxidation (PCO) is a promising and emerging technique in controlling indoor air contaminants, including volatile organic compounds (VOCs). It has broad air cleaning and deodorization applications in indoor environments ranging from residential and office buildings to healthcare and nursing facilities as well as spacecrafts, aircraft cabins and clean rooms in the agricultural and food industry. Numerous studies have been conducted to improve the effectiveness and performance of this technology. These include development of new configurations, energy-efficient catalysts and other parameters to control the process. However, only limited research has been conducted under realistic indoor environmental conditions. One of the most recent developments in photocatalysis is the synthesis of 2% C- and V-doped TiO[subscript]2, which is active under both dark and visible light conditions. However, like most research conducted in photocatalysis, the study on the reactivity of this catalyst has been performed only under laboratory conditions. This study investigated the possible application of the novel C and V co-doped TiO[subscript]2 in cleaning indoor air. Mathematical modeling and simulation techniques were employed to assess the potential use of some of the promising systems that utilize the catalyst (i.e., packed bed and thin films) as well as the effect of mass transfer limitations in the degradation of acetaldehyde, one of the VOCs that can be found in offices, residential buildings and other facilities.
29

Aerodynamic, infrared extinction and tribocharing properties of nanostructured and conventional particles

Pjesky, Susana Castro January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Ronaldo G. Maghirang / Nanostructured particles possess unique chemical and physical properties, making them excellent candidates for air purification, smoke clearing, and obscuration. This research was conducted to investigate the aerodynamic, charging, and infrared (IR) extinction properties of nanostructured particles. Specific objectives were to: (1) measure the size distribution and concentration of aerosolized nanostructured particles; (2) evaluate their IR extinction properties; (3) determine their relative chargeability; and (4) numerically model their transport in enclosed rooms. The size distribution and concentration of two nanostructured particles (NanoActive® MgO and MgO plus) were measured in an enclosed room. The particles differed in size distribution and concentration; for example, the geometric mean diameters of NanoActive® MgO and MgO plus were 3.12 and 11.1 [Mu]m, respectively. The potential of nanostructured particles as IR obscurants was determined and compared with other particles. Four groups of particles were considered: nanostructured particles (NanoActive® MgO plus, MgO, TiO[subscript2]); nanorods (MgO, TiO[subscript2]); conventional particles (NaHCO[subscript3] and ISO fine test dust); and common obscurants (brass, graphite, carbon black). The extinction coefficients of the nanostructured particles were generally significantly smaller than those of the other particles. Graphite flakes had the greatest mass extinction coefficient (3.22 m[superscript2]/g), followed by carbon black (1.72 m[superscript2]/g), and brass flakes (1.57 m[superscript2]/g). Brass flakes had the greatest volume extinction coefficient (1.64 m[superscript2]/cc), followed by NaHCO[subscript3] (0.93 m[superscript2]/cc), and ISO fine test dust (0.91 m[superscript2]/cc). The relative chargeability of nanostructured particles was also investigated. Selected particles were passed through a Teflon tribocharger and their net charge-to-mass ratios were measured. Tribocharging was able to charge the particles; however, the resulting charge was generally small. NanoActive® TiO[subscript2] gained the highest net charge-to-mass ratio (1.21 mC/kg) followed by NanoActive® MgO (0.81 mC/kg) and ISO fine test dust (0.66 mC/kg). The transport of NanoActive® MgO plus and hollow glass spheres in an enclosed room was simulated by implementing the discrete phase model of FLUENT. In terms of mass concentrations, there was reasonable agreement between predicted and measured values for hollow glass spheres but not for NanoActive® MgO plus. In terms of number concentration, there was large discrepancy between predicted and measured values for both particles.
30

Modeling small reservoirs in the Great Plains to estimate overflow and ground-water recharge

Choodegowda, Ravikumar B. January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / James K. Koelliker / Small reservoirs catch and store water for long periods and they decrease streamflow and increase ground-water recharge. A field monitoring program provided the measured water depth for four years in several reservoirs in the Republican River Basin where there are concerns about their aggregate effects in the basin. The daily water budget operation for one reservoir was developed. Daily seepage rates were estimated by using precipitation, inflow and evaporation which was assumed equal to grass reference evapotranspiration (ET0), that average 120 to 150 cm/yr, along with the measured stage-storage and stage-surface area relationships. Two computer simulation modules, written in FORTRAN 95, were developed to estimate 1) overflow and gross seepage and 2) potential for ground-water recharge underneath the reservoir. Required daily input data are precipitation, ET0, and inflow from the watershed area. Required reservoir site characteristics include stage-storage and stage-surface area relationships, a standard seepage rate (S0) at 14 different levels in the reservoir, soil-water and plant-growth characteristics and a monthly crop-residue factor. The gross seepage module calculates water depth that determines daily overflow, the water-surface area for evaporation and the head of water on the 14 levels to cause seepage losses. If a level is not inundated, seepage is zero. If a level is inundated less than 0.3-m, S0 is used. When the water head (hL) on a level exceeds 0.3 m, the seepage rate (SL) is increased by, SL = S0 * (hL/0.3)0.25. This relationship was chosen after testing several exponent values between 0 and 1. The modules were calibrated on one reservoir and verified on two others in northwestern Kansas. Results showed runoff from the watersheds averaged about 1.2 to 1.6 cm/yr from the average annual precipitation of 46 to 62 cm. The three reservoirs reduced streamflow at the reservoir site by 74 to 97%, but 90 to 95% of the retained runoff was calculated to contribute to ground-water recharge. Several sensitivity analyses for model inputs were done. Results showed that, the ratio of the average annual inflow volume from the watershed area to the reservoir storage volume was the most sensitive input variable tested.

Page generated in 0.1359 seconds