Spelling suggestions: "subject:"engineering science"" "subject:"ingineering science""
191 |
YTTERBIUM-DOPED FIBER AMPLIFIERS: COMPUTER MODELING OF AMPLIFIER SYSTEMS AND A PRELIMINARY ELETRON MICROSCOPY STUDY OF SINGLE YTTERBIUM ATOMS IN DOPED OPTICAL FIBERSLiu, Hao 10 1900 (has links)
<p>Ytterbium-doped optical fibers have extensive applications in high-power fiber lasers, optical amplifiers, and amplified spontaneous emission light sources. In this thesis two sub-projects associated with ytterbium doped fibers are discussed.</p> <p>Numerical simulations have been used to model high-repetition rate ultrafast ytterbium-doped fiber amplifier systems assuming continuous-wave input signals under variable situations, such as one-sided and two-sided pumping. Different system configurations are also developed, such as a single-stage amplification system, a two-stage amplification system and a separated amplification system, providing alternative choices for experiments and applications. The simulation results are compared with experimental data and the simulation results from some other software. The influence of nonlinear effects in the fiber is also very briefly discussed in this thesis.</p> <p>In a second research activity, the distribution of ytterbium atoms is being investigated in a range of double-clad ytterbium-doped fibers. Using aberration-corrected electron microscopy, ytterbium atoms are directly observed from the wedge-shaped specimen, which was prepared from ytterbium-doped optical fibers by tripod polishing combined with ion milling. Challenges related to sample preparation and the interpretations of images are discussed, but the approach shows great potential to investigate the doping behaviors down to atomic scale in the fibers. The work is expected to help reveal mechanisms affecting the performance for the doped fibers, such as photodarkening which is potentially associated with clustering effects.</p> / Master of Applied Science (MASc)
|
192 |
Numerical Simulation of Multi-Phase Core-Shell Molten Metal Drop OscillationsSumaria, Kaushal 27 October 2017 (has links) (PDF)
The surface tension of liquid metals is an important and scientifically interesting parameter which affects many metallurgical processes such as casting, welding and melt spinning. Conventional methods for measuring surface tension are difficult to use for molten metals above temperatures of 1000 K. Containerless methods are can be used to measure the surface tension of molten metals above 1000 K. Oscillating drop method is one such method where a levitated droplet is allowed to undergo damped oscillations. Using the Rayleigh’s theory for the oscillation of force-free inviscid spherical droplets, surface tension and viscosity of the sample can be calculated from oscillation frequency and damping respectively.
In this thesis, a numerical model is developed in ANSYS Fluent to simulate the oscillations of the molten metal droplet. The Volume of Fluid approach is used for multiphase modelling. The effect of numerical schemes, mesh size, and initialization boundary conditions on the frequency of oscillation and the surface tension of the liquid are studied. The single-phase model predicts the surface tension of zirconium within a range of 13% when compared to the experimental data. The validated single phase model is extended to predict the interfacial tension of a core-shell structured compound drop. We study the effect of the core and shell orientation at the time of flow initialization. The numerical model we developed predicts the interfacial tension between copper and cobalt within the range of 6.5% when compared to the experimental data. The multiphase model fails to provide any conclusive data for interfacial tension between molten iron and slag.
|
193 |
High temperature steam/air interaction of Nextel-720/alumina ceramic matrix composite : a surface/interface study using surface analytical toolsWannaparhun, Surasak 01 July 2001 (has links)
No description available.
|
194 |
Oxidation and hot corrosion behavior of gas turbine superalloys in steamPhilip, Vinod M. 01 July 2000 (has links)
No description available.
|
195 |
An investigation into the relationship between the hydrogen storage properties and the microstructure of mechanically alloyed mixtures of titanium, magnesium, and nickelLomness, Janice K. 01 October 2001 (has links)
No description available.
|
196 |
Three dimensional reconstruction metrology by combinatory multiple parameter characterization and scanning probe microscopyHouge, Eric C. 01 April 2001 (has links)
No description available.
|
197 |
Non-destructive evaluation of thermal barrier coatings using electrochemical impedance spectroscopyJayaraj, Balaji 01 July 2003 (has links)
No description available.
|
198 |
Extrapolation Techiques for Very Low Cycle Fatigue Behavior of a Ni-base SuperalloyDaubenspeck, Brian R. 01 January 2010 (has links)
This thesis describes innovative methods used to predict high-stress amplitude, low cycle fatigue (LCF) behavior of a material commonly used in gas turbine blade design with the absence of such data. A combination of extrapolation and estimation techniques from both prior and current studies has been explored with the goal of developing a method to accurately characterize such high-temperature fatigue of IN738LC, a dual-phase Ni-base superalloy. A method capable of predicting high-stress (or strain) amplitude fatigue from incessantly available low-stress amplitude, high cycle fatigue (HCF) would lower the costs of inspection, repair, and replacement on certain turbine components. Three sets of experimental data at different temperatures are used to evaluate and examine the validity of extrapolation methods such as anchor points and hysteresis energy trends. Stemming from extrapolation techniques developed earlier by Coffin, Manson, and Basquin, the techniques exercised in this study purely implement tensile test and HCF data with limited plastic strain during the estimation processes. A standard practice in engineering design necessitates mechanical testing closely resembling planned service conditions; for design against fatigue failure, HCF and tensile data are the experiments of choice. High stress amplitude data points approaching the ultimate strength of the material were added to the pre-existing HCF base data to achieve a full-range data set that could be used to test the legitimacy of the different prediction methods. While some methods proved to be useful for bounding estimates, others provided for superior estimation.
|
199 |
Electrodeposition of Tunable Zinc Oxide Nanomaterials for Optical ApplicationsPavlovski, Joey 01 October 2014 (has links)
<p>Renewable energy technologies and the development of cleaner and more environmentally friendly power have been at the forefront of research for the past few decades. Photovoltaic systems – systems that convert photon energy to electrical energy – are at the center of these research efforts. Decreasing the cost of energy production, through increasing the power conversion efficiency or decreasing the device cost, is a key factor in widespread use of these energy production systems. To increase the energy conversion efficiency, ideally, all useful photons should be absorbed by the solar cell; however, due to the large discontinuity in the refractive index at the solar cell/air interface, a large fraction of incidence light is lost due to reflection (30% loss in crystalline silicon cells). The currently used single and double layer anti-reflection coatings reduce the reflection losses, but their optimal performance is limited to a narrow range of wavelengths and angles of incidence. Moth-eye anti-reflection coatings are composed of patterned single layer films having a gradual decrease in refractive index from the solar cell surface to air. This study is focused on developing an inexpensive method for direct deposition of patterned films – in the form of moth-eye anti-reflection coatings – on solar cell surface.</p> <p>In this research, the creation of moth-eye anti-reflection coatings has been attempted through the process of electrodeposition. ZnO was chosen for the thin film material, and the ability to develop the required moth-eye structure by changing the electrodeposition parameters including temperature, applied potential, type and concentration of solution-borne species, and type of substrate was investigated. Using this method, pyramidal and hemispherical structures with a 100-200 nm diameter and 100-200 nm height were created directly on ITO substrates. Similar structures were also developed on silicon substrates. The anti-reflection properties of ZnO-coated silicon substrates were investigated by comparing their broadband and broad angle reflection-mode UV-VIS spectrum with uncoated silicon. The optimized ZnO-coated silicon substrate showed a reflectance of at most 20% for wavelengths between 400-1500 nm at angles of incidence less than 50<sup>O</sup>.</p> / Master of Applied Science (MASc)
|
200 |
An Evaluation of Induction Heating in Healthcare Food IndustryHampton, Barrett Alexander 01 April 2018 (has links)
This thesis addresses the problem healthcare facilities are having in maintaining proper food temperatures while transporting meals to patients after food has left the kitchen area. Induction heat has been a known method for generating heat for many years. The commercial food industry currently uses this technology, which is beginning to appear in the residential sector as well because of developments made by manufacturers. This study focuses on the top commercial brand models of induction heaters and the supporting materials currently used to create heat sources to maintain food temperatures in hospitals and long term care facilities.
The research in this thesis includes data recorded from 6,000 total induction cycles from the 3 leading induction heating models. The focus of the research was to gather data concerning the models’ reliability to consistently create the intended inducement of radio frequency waves as well as deliver consistent temperature reactions from the recorded induction cycles. There were 18,000 temperature data points recorded during different time intervals for each of the induction cycles for the entire study. The results indicate the current technology not only is reliable in creating inductions fields but also in delivering consistent temperatures in the supporting materials being heated.
Induction has been used historically as a fast heating process to treat large metal products and requires no direct contact to create or transfer heat to a surface (Rudnev et al., 2003). The speed and consistent application of heat transfer that has been derived by modern manufacturing induction practices makes it a logical use of existing technology to be applied in maintaining temperatures of food in the healthcare market. However, the focus for commercial equipment manufacturers has been to market products that can consistently maintain desired food temperatures, particularly in the healthcare industry. Traditionally, heating foods was accomplished by physically applying heat to areas where food is stored, in order to reach a certain temperature, and then working to deliver that food to the patient in a timely manner or before it cooled to temperatures that would be deemed too cold for consumption. If the food was too cold, before it was served to the patient, then it was typically micro waved in order to reheat the food. However, reheating food in the microwave is not only detrimental, but it also degrades food quality, texture, and visual presentation (Harvard Health, 2015). As a result, the effort demanded to deliver all foods to all patients, while the food is still at an ideal temperature, has resulted in an increased cost of labor. This is because healthcare facilities have had to hire additional workers to meet the demands placed on the nutrition department related to safe temperatures and speed of food delivery (Aladdin, 2013).
|
Page generated in 0.0784 seconds