• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanoparticle Encapsulation and Aggregation Control in Anti-reflection Coatings and Organic Photovoltaics

Metzman, Jonathan Seth 29 October 2018 (has links)
Nanoparticles present a myriad of physical, optical, electrical, and chemical properties that provide valuable functionality to thin-film technologies. In order to successfully exploit these aspects of nanoparticles, appropriate dispersion and stability measures must be implemented. In this dissertation, different types of nanoparticles are coated with polymer and metallic layers to enable their effectiveness in both anti-reflection coatings (ARCs) and organic photovoltaics (OPVs). Ionic self-assembled multilayers (ISAMs) fabrication of poly(allylamine hydrochloride) (PAH) and silica nanoparticles (SiO2 NPs) results in highly-transparent, porous ARCs. However, the ionic bonding and low contact area between the film constituents lack sufficient mechanical and chemical stability necessary for commercial application. Chemical stability was established in the film by the encapsulation of SiO2 NPs by a photo-crosslinkable polyelectrolyte, diazo-resin (DAR) to make modified silica nanoparticles (MSNPs). UV-irradiation induced decomposition of the diazonium group and the development of covalent bonds with polyanions. Crosslinked MSNP/poly(styrene sulfonate) (PSS) ISAMs exhibited excellent anti-reflectivity (transmittance >98%, reflectance <0.2% in the visible range) and chemical stability against dissolution in a ternary solvent. Mechanical stability was also achieved by the incorporation of two additional PAH and poly(acrylic acid) (PAA) layers to create PAH/PAA/PAH/SiO2 NP interlayer ISAM ARCs. Thermal crosslinking of PAH and PAA facilitates the formation of covalent amide bonds between the two polyelectrolytes, as confirmed by FTIR. Since PAH and PAA are both weak polyelectrolytes, adjustment of the solution pH causes significant variations in the polymer chain charge densities. At low PAA pH, the decreased chain charge densities caused large SiO2 NP encapsulation thicknesses in the film with great mechanical stability, but poor anti-reflection (≤97% transmittance). At high PAA pH, the high chain charge densities induced thin encapsulation layers, insufficient mechanical stability, but excellent anti-reflection. At trade-off between the two extremes was founded at a PAA pH of 5.2 with excellent anti-reflection (less than 99% transmittance) and sufficient mechanical stability. The normal force required for scratch initiation was increased by a factor of seven for films made from a pH of 5.2 compared to those made from a pH of 6.0. Organic photovoltaics (OPVs) are an attractive area of solar cell research due to their inexpensive nature, ease of large-scale fabrication, flexibility, and low-weight. The introduction of the bulk heterojunction greatly improved charge transport and OPV performance by the blending of the active layer electron donor and acceptor materials, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), into an interpenetrating network with high interfacial area between adjacent nanodomains. However, constrained active layer thicknesses restrict the total optical absorption and device performance. The localized surface plasmon resonance (LSPR) of plasmonic nanoparticles, such as anisotropic silver nanoplates (AgNPs), provides large local field enhancements and in coupling with the active layer, substantial optical absorption improvements can be realized. AgNPs were first integrated into the hole-transport layer (PEDOT:PSS) by ISAM deposition. Here, PEDOT:PSS was used as a negatively-charged ISAM layer. Encapsulation of the AgNPs by PAH (ENPs) provided a positive surface charge and allowed for the creation of ENP/PEDOT:PSS ISAMs. Stability against acidic etching by PEDOT:PSS was imparted to the AgNPs by coating the edges with gold (AuAgNPs). The AuAgNP ISAMs substantially improved the optical absorption, but were ineffective at increasing the device performance. The dispersion effects of functionalized polymer coatings on AgNPs were also deeply investigated. Functionalized AgNPs were dispersed in methanol and spin-coated onto the active layer. When the AgNPs possessed hydrophilic properties, such as unfunctionalized or functionalized by poly(ethylene glycol) methyl ether thiol (PEG-SH), they formed large aggregates due to unfavorable interactions with the hydrophobic P3HT:PCBM layer. However, the hydrophobic functionalization of AgNPs with thiol-terminated polystyrene (PS-SH) (PS-AgNPs) resulted in excellent dispersion, optical absorption enhancements, and device performance improvements. At a PS-AgNP concentration of 0.57 nM, the device efficiency was increased by 32% over the reference devices. / Ph. D. / Investigations are presented on the quality of distribution or dispersion of functional inorganic (composed of silicon dioxide or silver) particles that have dimensions of less than 100 nanometers, called nanoparticles. The nanoparticle surfaces were covered with polymer layers, where polymers are organic materials with repeating molecular structures. The study of these nanoparticle distribution effects were first examined in anti-reflection coatings (ARCs). ARCs induce transparency of windows or glasses through a reduction in the reflection of light. Here, the ARCs were fabricated as self-assembled thin-films (films with thicknesses ranging from 1 to 2000 nanometers). The self-assembly process here was carried out by immersing a charged substrate (microscope slide) into a solution with an oppositely-charged material. The attraction of the material to the substrate leads to thin-film growth. The process can continue by sequentially immersing the thin-film into oppositely-charged solutions for a desired number of thin-film layers. This technique is called ionic self-assembled multilayers (ISAMs). ARCs created by ISAM with charged polymers (polyelectrolytes) and silicon dioxide nanoparticles (SiO2 NPs) can lead to highly-transparent films, but unfortunately, they lack the stability and scratch-resistance necessary for commercial applications. In this dissertation, we address the lack of stability in the ISAM ARCs by adding additional polyelectrolyte layers that can develop strong, covalent bonds, while also examining nanoparticle dispersive properties. First, SiO2 NP surfaces were coated in solution with a polyelectrolyte called diazo-resin, which can form covalent bonds by UV-light exposure of the film. After tuning the concentration for the added diazo-resin, the coated SiO2 NPs were used to make ARCs ISAM films. The ARCs had excellent nanoparticle dispersion, high levels of transparency, and chemical stability. Chemically stability entails that the integrity of the film was unaffected by exposure to polar organic solvents or strong polyelectrolytes. In a second method, two additional v polyelectrolyte layers were added into the original polyelectrolyte/SiO2 NP design. Here, heating of the film to 200 oC temperatures induced strong covalent bonding between the polyelectrolytes. Variation of the solution pH dramatically changed the polyelectrolyte thickness, the nanoparticle dispersion, the scratch-resistance, and the anti-reflection. An optimum trade-off was discovered at a pH of 5.2, where the anti-reflection was excellent (amount of transmitted light over 99%), along with a substantially improved scratch-resistance. A change of pH from 6.0 (highest tested pH) to 5.2 (optimal) caused a difference in the scratch-resistance by a factor of seven. In these findings, we introduce stability enhancing properties from films composed purely of polyelectrolytes into nanoparticle-containing ISAM films. We also show that a simple adjustment of solution parameters, such as the pH value, can cause substantial differences in the film properties. Nanoparticle dispersion properties were next investigated in organic photovoltaics (OPVs) OPVs use semiconducting polymers to convert sunlight into usable electricity. They have many advantages over traditional solar cells, including their simple processing, low-cost, flexibility, and lightweight. However, OPVs are limited by their total optical absorption or the amount of light that can potentially be converted to electricity. The addition of plasmonic nanoparticles into an OPV device is a suitable way to increase optical absorption without changing the other device properties. Plasmonic nanoparticles, which are composed of noble metals (such as silver or gold), act as “light antennas” that concentrate incoming light and radiate it around the particle. In this dissertation, we investigate the dispersion and stability effects of polymer or metallic layers on silver nanoplates (AgNPs). The stability of the AgNPs was found to be greatly enhanced by coating the nanoparticle edges with a thin gold layer (AuAgNPs). AuAgNPs could then be introduced into a conductive, acidic layer of the OPVs (PEDOT:PSS) to increase the overall light absorption, which otherwise would be impossible with uncoated AgNPs. Next, the AgNPs were distributed on top of the photoactive layer or the layer that is responsible for absorbing light. Coating the AgNPs with a polystyrene polymer layer (PS-AgNPs) allowed for excellent dispersion on this layer and contrastingly, dispersion of the uncoated AgNPs was poor. An increased amount PS-AgNPs added on top of the photoactive layer progressively increased the optical absorption of the OPV devices. However, trends were quite different for the power conversion efficiency or the ratio of electricity power to sunlight power in the OPV device. The greatest PCE enhancements (27 – 32%) were found at a relatively low coverage level (using a solution concentration of 0.29 to 0.57 nM) of the PS-AgNPs on the photoactive layer.
2

Electrodeposition of Tunable Zinc Oxide Nanomaterials for Optical Applications

Pavlovski, Joey 01 October 2014 (has links)
<p>Renewable energy technologies and the development of cleaner and more environmentally friendly power have been at the forefront of research for the past few decades. Photovoltaic systems – systems that convert photon energy to electrical energy – are at the center of these research efforts. Decreasing the cost of energy production, through increasing the power conversion efficiency or decreasing the device cost, is a key factor in widespread use of these energy production systems. To increase the energy conversion efficiency, ideally, all useful photons should be absorbed by the solar cell; however, due to the large discontinuity in the refractive index at the solar cell/air interface, a large fraction of incidence light is lost due to reflection (30% loss in crystalline silicon cells). The currently used single and double layer anti-reflection coatings reduce the reflection losses, but their optimal performance is limited to a narrow range of wavelengths and angles of incidence. Moth-eye anti-reflection coatings are composed of patterned single layer films having a gradual decrease in refractive index from the solar cell surface to air. This study is focused on developing an inexpensive method for direct deposition of patterned films – in the form of moth-eye anti-reflection coatings – on solar cell surface.</p> <p>In this research, the creation of moth-eye anti-reflection coatings has been attempted through the process of electrodeposition. ZnO was chosen for the thin film material, and the ability to develop the required moth-eye structure by changing the electrodeposition parameters including temperature, applied potential, type and concentration of solution-borne species, and type of substrate was investigated. Using this method, pyramidal and hemispherical structures with a 100-200 nm diameter and 100-200 nm height were created directly on ITO substrates. Similar structures were also developed on silicon substrates. The anti-reflection properties of ZnO-coated silicon substrates were investigated by comparing their broadband and broad angle reflection-mode UV-VIS spectrum with uncoated silicon. The optimized ZnO-coated silicon substrate showed a reflectance of at most 20% for wavelengths between 400-1500 nm at angles of incidence less than 50<sup>O</sup>.</p> / Master of Applied Science (MASc)
3

Strategies for high efficiency silicon solar cells

Davidson, Lauren Michel 01 May 2017 (has links)
The fabrication of low cost, high efficiency solar cells is imperative in competing with existing energy technologies. Many research groups have explored using III-V materials and thin-film technologies to create high efficiency cells; however, the materials and manufacturing processes are very costly as compared to monocrystalline silicon (Si) solar cells. Since commercial Si solar cells typically have efficiencies in the range of 17-19%, techniques such as surface texturing, depositing a surface-passivating film, and creating multi-junction Si cells are used to improve the efficiency without significantly increasing the manufacturing costs. This research focused on two of these techniques: (1) a tandem junction solar cell comprised of a thin-film perovskite top cell and a wafer-based Si bottom cell, and (2) Si solar cells with single- and double-layer silicon nitride (SiNx) anti-reflection coatings (ARC). The perovskite/Si tandem junction cell was modeled using a Matlab analytical program. The model took in material properties such as doping concentrations, diffusion coefficients, and band gap energy and calculated the photocurrents, voltages, and efficiencies of the cells individually and in the tandem configuration. A planar Si bottom cell, a cell with a SiNx coating, or a nanostructured black silicon (bSi) cell can be modeled in either an n-terminal or series-connected configuration with the perovskite top cell. By optimizing the bottom and top cell parameters, a tandem cell with an efficiency of 31.78% was reached. Next, planar Si solar cells were fabricated, and the effects of single- and double-layer SiNx films deposited on the cells were explored. Silicon nitride was sputtered onto planar Si samples, and the refractive index and thicknesses of the films were measured using ellipsometry. A range of refractive indices can be reached by adjusting the gas flow rate ratios of nitrogen (N2) and argon (Ar) in the system. The refractive index and thickness of the film affect where the minimum of the reflection curve is located. For Si, the optimum refractive index of a single-layer passivation film is 1.85 with a thickness of 80nm so that the minimum reflection is at 600nm, which is where the photon flux is maximized. However, using a double-layer film of SiNx, the Si solar cell performance is further improved due to surface passivation and lowered surface reflectivity. A bottom layer film with a higher refractive index passivates the Si cell and reduces surface reflectivity, while the top layer film with a smaller refractive index further reduces the surface reflectivity. The refractive indices and thicknesses of the double-layer films were varied, and current-voltage (IV) and external quantum efficiency (EQE) measurements were taken. The double-layer films resulted in an absolute value increase in efficiency of up to 1.8%.
4

Novel Organic Heterostructures Enabled by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE)

McCormick, Ryan January 2014 (has links)
<p>An explosion in the growth of organic materials used for optoelectronic devices is linked to the promise that they have demonstrated in several ways: workable carrier mobilities, ease of processing, design flexibility to tailor their optical and electrical characteristics, structural flexibility, and fabrication scalability. However, challenges remain before they are ready for prime time. Deposition of these materials into ordered thin films requires that they be cast from solutions of organic solvents. Drawbacks of solution-casting include the difficulty of producing layered films without utilizing orthogonal solvents (or even with orthogonal solvents), the difficulty in controlling domain sizes in films of mixed materials, and the lack of parameter options used to control the final properties of thin films. Emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a thin film deposition technique that is demonstrated to provide solutions to these problems.</p><p>This work presents fundamental research into the RIR-MAPLE process. An investigation of the molecular weight of deposited materials demonstrates that emulsion-based RIR-MAPLE is capable of depositing polymers with their native molecular weights intact, unlike other laser deposition techniques. The ability to deposit multilayer films with clearly defined interfaces is also demonstrated by cross-sectional transmission electron microscopy imaging of a layered polymer/quantum dot nanocomposite film. In addition, trade-offs related to the presence of surfactant in the target, required to stabilize the emulsion, are articulated and investigated by x-ray diffraction, electrical, optical, and surface characterization techniques. These studies show that, generally speaking, the structural, optical and electrical properties are not significantly affected by the affected by the presence of surfactant, provided that the concentration within the target is sufficiently low. Importantly, the in-plane mobility of RIR-MAPLE devices, determined by organic field effect transistor (OFET) characterization, rivals that of spin-cast devices produced under similar conditions. </p><p>This work also presents results of emulsion-based RIR-MAPLE deposition applied to optical coatings (gradient-refractive index antireflection coating based on porous, multilayer films) and optoelectronic devices (organic photovoltaics based on the polymer, P3HT, and small molecule, PC61BM, bulk heterojunction system). The optical coating demonstrates that RIR-MAPLE is capable of producing nanoscale domain sizes in mixed polymer blends that allow a film to function as an effective medium relevant to devices in the visible spectrum. Moreover, bulk heterojunction organic photovoltaic (OPV) devices that require nanoscale domains to function effectively are achieved by co-deposition of P3HT and PC61BM, achieving a power conversion efficiency of 1.0%, which is a record for MAPLE-deposited devices. </p><p>Results of these studies illuminate unique capabilities of the RIR-MAPLE process. Multilayer films are readily fabricated to create true bilayer OPV structures. Additionally, true gradient thin films are created by varying the ratio of two materials, including two-polymer films and a film consisting of a polymer and a small molecule, over the course of a single deposition.</p> / Dissertation
5

Analytic Optimization Modeling of Anti-Reflection Coatings for Solar Cells

Al-Turk, Sarry 10 1900 (has links)
<p>The world’s dependence on oil cannot continue indefinitely. As reserves dwindle and demand continues to increase, prices will soar to new highs and fundamentally change the way society deals with energy generation and consumption. Use of oil and other carbon-based fuels also have detrimental effects on human health, as pollution that arises from the combustion of these fuels necessitates treating respiratory problems in millions of people annually. Moreover, evidence that climate change is anthropogenic has become undeniable and has been proven to be direct related to dependence on carbon-based fuels.</p> <p>Renewable energy offers clean and dependable alternatives for electricity, heating and transport. In particular, solar energy looks to be the most promising owing to its sheer abundance and ubiquity. The main obstacle hindering the adoption of solar cell technology en masse is cost. One of the ways to reduce cost is to fabricate thinner solar cells, but this compromises efficiency due to lower optical absorption that results, especially in silicon. In order to become a serious competitor in the energy market, highly absorptive solar cells must be developed at reduced material costs, which is the essence of light-trapping.</p> <p>In this study, two of the most common ways to trap light by reducing reflection were investigated: the application of anti-reflection coatings and surface texturing in silicon. Analytic models were created to optimize optical design in both single-junction and multi-junction solar cells. The single-junction silicon models accounted for non-normal incidence, which allowed angle-averaged calculations to be made for planar and textured surfaces. Single-junction GaAs models included a GaInP window layer whose optical effects were considered in anti-reflection coating optimization. The multi-junction GaAs-on-silicon (GaAs/Si) and AlGaAs-on-silicon (AlGaAs/Si) models that were created clearly demonstrated the need to adjust individual subcell thicknesses in order to optimize optical design.</p> / Master of Applied Science (MASc)
6

Multiband Detectors and Application of Nanostructured Anti-Reflection Coatings for Improved Efficiency

Jayasinghe, J. A. Ranga C 20 December 2012 (has links)
This work describes multiband photon detection techniques based on novel semiconductor device concepts and detector designs with simultaneous detection of dierent wavelength radiation such as UV and IR. One aim of this investigation is to examine UV and IR detection concepts with a view to resolve some of the issues of existing IR detectors such as high dark current, non uniformity, and low operating temperature and to avoid having additional optical components such as filters in multiband detection. Structures were fabricated to demonstrate the UV and IR detection concepts and determine detector parameters: (i) UV/IR detection based on GaN/AlGaN heterostructures, (ii) Optical characterization of p-type InP thin films were carried out with the idea of developing InP based detectors, (iii) Intervalence band transitions in InGaAsP/InP heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. Device concepts, detector structures, and experimental results are discussed. In order to reduce reflection, TiO2 and SiO2 nanostructured thin film characterization and application of these as anti-reflection coatings on above mentioned detectors is also discussed.

Page generated in 0.1122 seconds