• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 96
  • 19
  • 18
  • 16
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Sources of Cost Saving Opportunities in Highway Construction Quality Assurance Practices

Uddin, Mohammad M., Newland, J. 31 March 2018 (has links)
US transportation agencies are dealing with shrinking budgets, limited work forces, and deteriorating infrastructure. In order to cope with funding uncertainty, state highway agencies are now looking into their own organizations and identifying programs, practices, and processes that have potential for cost saving. A quality assurance (QA) program is an integral part of highway construction and ensures a project’s contracted level of quality. The cost of quality (conforming and nonconforming) can constitute a sizable part of total construction cost. As the quality assurance programs evolved, various practices and processes were developed over time and later adopted by state highway agencies. These practices and processes include different QA standards and specifications, varying testing methods, central testing lab vs. on site testing, performance based vs. prescribed quality assurance practices, implementation of innovative quality assurance practices, etc. Therefore, there is an opportunity to assess different QA strategies and recommend those practices that are effective and cost efficient. A national survey was conducted by the authors, which provided a detailed mapping of various QA practices and processes used as part of QA programs and identified areas where agencies can focus on for cost savings. The survey found that QA sampling and testing plans, optimization of sampling plans, optimization of QA standards and specifications, and implementation of innovative test methods and processes are the main areas the agencies should focus to lean the current QA programs.
102

Lean Construction Quality Assurance Opportunities in Highway Construction

Uddin, Mohammad M. 06 July 2020 (has links)
Quality management is a significant component of any construction project and the cost of quality can constitute a sizable part of total construction cost. US state highway agencies are in constant pressure to do more with less. Applying Lean construction management principles can be a viable way to eliminate waste and inefficiencies and maximize value and efficiency in quality assurance (QA). State highway agencies have implemented various QA practices and processes which include different QA standards and specifications, varying testing methods, central testing lab vs. on site testing, performance based vs. prescribed quality assurance practices, implementation of innovative quality assurance practices, etc. Therefore, there is an opportunity to assess different QA strategies and recommend lean QA practices that are cost effective. A survey was conducted among state highway agencies, which provided a detailed mapping of various QA practices and processes used as part of QA programs and identified areas where agencies can focus on for cost savings. The survey found that QA sampling and testing plans, optimization of sampling plans, optimization of QA standards and specifications, and implementation of innovative test methods and processes are the main areas the agencies should focus on to lean the current QA programs.
103

Calculating Road User Cost for Specific Sections of Highway for Use in Alternative Contracting Project

Shrestha, Krishna J., Uddin, Mohammad M., Adebiyi, J. 26 September 2021 (has links) (PDF)
Road user costs (RUCs) quantify the inconveniences to road users resulting from ongoing construction projects. Although the concept of RUC has traditionally been associated with the life cycle cost analysis, its importance has increased in alternative contracting methods in recent years. Despite its importance, the Tennessee Department of Transportation (TDOT) currently lacks a systematic methodology to compute RUCs. With the increased use of alternative contracting such as A+B, TDOT can benefit significantly if a systematic methodology and a tool are developed to compute RUCs in-house. The main goal of this study is to develop a framework and accompanying tool to compute RUCs, which balances the ease of computing and accuracy of results. To achieve this goal, the study reviewed existing literature on the topic, conducted a nationwide survey, and identified the current best practices of calculating and utilizing RUCs. The study found that more than half of the state Departments of Transportation (DOTs) that responded to the questionnaire have developed their state-specific methodologies to compute RUCs. The delay costs and the vehicle operating costs are the two most common components computed by a majority of state DOTs. Based on the findings of the study, a framework to compute RUCs is developed to enable TDOT to quickly compute RUCs more efficiently. Subsequently, a spreadsheet based TDOT RUC Calculation Tool (TRCT) is developed to implement the framework. The tool can compute four components of the RUC: a) delay cost, b) vehicle operating cost, c) crash cost, and d) emission cost. Relevant standard datasets such as median household income and emission rates were collected and/or produced for the tool. The tool automatically accounts for the spatiotemporal variation in the RUCs using Consumer Price Index (CPI) and county-specific data. The computed RUCs can be used for A+B contracting, benefit-cost analysis, liquidated damage computation, and early-completion-incentive computation.
104

Embedding Innovation Process And Methodology In Engineering Technology And Business Management And Marketing Courses

Clark, W. Andrew, Sims, J. Paul, Turner, Craig A., Smith, Jon L. 18 June 2006 (has links)
For many business segments, true “out of the box” innovation occurs in entrepreneurial companies where the founders aren’t hindered with the research paradigms established by mainstream businesses. The founders of these companies, many times technologists and scientists, see the application of the technology long before potential customers develop an understanding of the capabilities that the new technology can bring to the marketplace. Many times these “new technology ideas” have been developed though modifying an existing dominant design (product or service) to meet an unforeseen market need or through the development of a new design that may become the new industry standard. The competitors of tomorrow may reside in radically different markets yet have the insight to envision the application or modification of an existing technology to a market segment that they are currently not involved in. Teaching engineering technology students techniques and visioning tactics related to the innovation process has been difficult. Several of the authors have experienced, both in the classroom and in industrial settings, that many engineering and engineering technology students see innovation as the application of engineering principals resulting in small incremental changes in a process. Although these changes may result in a more efficient process through increased productivity, reduced waste, faster cycle times, etcetera; continuous improvement projects many times do not generate the dramatic market changes seen with a new dominant design. In fact in many established industries, disruptive innovation is discouraged in favor of continuous innovation because of the uncertainty of the risk/reward quotient and the impact that failed experimentation (increased research and development costs) can have on Wall Street’s perception of a company. Our university recently merged the colleges of Business and Technology and Applied Sciences resulting in a cross-pollinated faculty and the establishment of courses in the graduate and undergraduate curriculum where business and engineering technology student’s work together on class projects, many of which involve an innovation component. It is interesting that many of the faculty who incorporate a discussion or exercise related to the innovation process in their classroom have had extensive experience in an industrial setting prior to joining the university faculty. Industry seasoned faculty bring their “real-world” experience to the classroom and challenge students to move beyond continuous improvement projects. In several cases, ideas generated in the classroom or through collaborative efforts between the business and technology faculty have resulted in prototypes being built in the laboratory for further testing of the prospective innovation. The presence of a technology-centered business incubator located within walking distance from campus provides students the opportunity to observe several high technology businesses that have developed new technology niches in established market segments. These businesses provide consulting opportunities for cross-disciplinary graduate student teams to observe the challenges of introducing a new technology to address previously met market needs through introduction of a superior product. The business incubator is further linked to a sister technology-centered business incubator in Europe providing students (graduate and undergraduate) the opportunity to evaluate if a new technology should be launched initially in the United States or Europe. The creation of these learning opportunities mimic the industrial setting where graduates will be required to operate in cross-disciplinary teams that may address global manufacturing and marketing decisions. This paper discusses the pedagogical approaches several faculty members have developed to introduce and cultivate a creative innovation process to undergraduate and graduate students enrolled in technology engineering and business marketing and management classes. These approaches include identifying unmet market niche opportunities, identifying technologies utilized in alternative markets that could be utilized for different market segments, classroom exercises to compel students to search existing patent literature, ideation and brainstorming exercises and researching business entities to identify their technology strategy and implementation plans.
105

A novel cryogenic particle engineering technology to micronize water-insoluble drugs and enhance their dissolution properties : spray-freezing into liquid

Rogers, True Lawson 14 May 2015 (has links)
Poorly water-soluble and insoluble chemical agents are routinely investigated in the pharmaceutical industry for pharmacological activity, but many of these are never commercialized due to inadequate dissolution and subsequent low oral bioavailability following oral administration. The bioavailability of many hydrophobic active pharmaceutical ingredients (APIs) can be increased by enhancing their aqueous dissolution. Spray-Freezing into Liquid (SFL) is a novel particle engineering technology that has been demonstrated in the following studies to significantly enhance the dissolution of insoluble APIs. The ultimate goal throughout the studies was to produce micronized SFL powders where the inherently insoluble API would be completely dissolved in aqueous dissolution media within a minimal amount of time (less than ca. 10 minutes). The SFL particle engineering technology is a novel process that was developed, investigated and optimized in order to broaden its applications in pharmaceutical drug delivery systems. Micronized SFL powders were compared head-to-head with powders produced from milling, co-grinding with excipients and slow freezing of liquids containing dissolved API and excipients followed by lyophilization. To strengthen the applicability of the SFL particle engineering technology, studies were conducted where micronized SFL powders were exposed to various stability storage conditions, and characterized to determine the influences of the exposure conditions and time on the physicochemical properties of the powder containing the API. The utility of the SFL process was further enhanced by developing an atmospheric freeze-drying (ATMFD) technique to obtain dry micronized SFL powders. Micronized SFL powders dried by ATMFD were compared to micronized SFL powders dried by vacuum-freeze drying to determine any changes in physicochemical properties or dissolution profiles as a function of the drying technique utilized. The usefulness of the SFL particle engineering technology was broadened when it was found that highly concentrated emulsions could be processed by SFL to produce micronized powders that rapidly wetted and dissolved in dissolution media. Micronized SFL powders produced from emulsion were investigated and compared to slowly frozen agglomerates from emulsion and a micronized SFL powder from solution. As a result of the following studies, the enabling examples using the SFL platform were designed to illustrate applications of the SFL technology as a tool to enhance the aqueous dissolution of poorly water-soluble and insoluble APIs. Therefore, it was demonstrated that this novel particle engineering technology is a feasible method that may be used in the pharmaceutical industry to solve the ever-present solubility and dissolution problems associated with poorly water-soluble or insoluble APIs, or chemical agents being investigated for pharmacological activity as future APIs / text
106

Accurate thermal sensing with modern CMOS integrated circuits : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Auckland, New Zealand

Fisk, Robert Patrick January 2010 (has links)
Content removed due to copyright Conference Proceedings I R. P. Fisk and S. M. Hasan, “Analysis of Internally-Generated Noise in Bandgap References,” in Proc. Electronics New Zealand Conf., Christchurch, New Zealand, Nov. 2006, pp. 18-23. Conference Proceedings II R. P. Fisk and S. M. Hasan, “Incremental Delta-Sigma Modulators for Temperature Sensing Applications,” in Proc. Int. Conf. Mechatronics and Machine Vision in Practice, Auckland, New Zealand, Dec. 2008, pp. 63-67. Conference Proceedings III R. P. Fisk and S. M. Hasan, “Low-Cost Temperature Sensor on a Modern Submicron CMOS Process,” in Proc. Electronics New Zealand Conf., Otago, New Zealand, 2009, pp. 43-48. / Digital control systems can be found performing a wide range of duties throughout modern society. These systems demand accurate, low cost interfaces to physical parameters of interest, one of the most common being temperature. A ‘smart’ sensor takes advantage of modern integrated circuit technology to create a sensor and analog-to-digital converter on the same silicon chip. Smart temperature sensors are widely available offering simple digital interfaces, high reliability, low power consumption and low cost. The primary weakness of these devices is the low inherent accuracy of on-chip thermal sensors. This thesis presents a smart thermal sensor design that improves upon current technology by employing a modern 0.13μm CMOS process and circuit-level techniques to reduce sensor size and power consumption while increasing digital converter resolution. Data is presented that shows uncalibrated sensor accuracy can be increased by using correlated device characteristics to compensate for random inter-device variation. The research findings guide the construction of future smart thermal sensors with uncalibrated accuracy levels exceeding that of any currently available design.
107

Successful Factors for Native and Community College Transfer Students in Engineering Technology at a Four-Year University

Craig, Leendert 01 May 2019 (has links)
Students who attend community colleges often transfer to 4-year universities seeking to earn a degree typically not offered at the community college level. Tennessee has 2 programs: the Tennessee Promise and the Tennessee Reconnect programs that offer students tuition-free access to the state’s community college system. Previous studies have been conducted to compare transfer students’ performances to that of native students and typically compared the students in all disciplines. This study seeks to compare transfer students (students who enter the participating university with 40 or more credit hours) to native students (students who initially enrolled or transferred into the 4-year participating university with fewer than 40 credit hours) the engineering technology major (ENTC) to determine if transfer students are doing as well as or better than native students. The present study used archival data from student records from fall 2008 through fall 2017. The data were provided by Institutional Research at the participating university. The dataset included 416 transfer students and 900 native students. Students were classified as transfer or native based on study criteria. They were then divided into subgroups by gender, Pell grant recipient status, first-generation status, 3000 and 4000 level GPA, high-school GPA, ACT composite scores, age, and whether the student graduated or not. The data were analyzed quantitatively seeking to find differences between the native and transfer students’ graduation rates and differences in the subgroups. The 3000 and 4000 level coursework GPA were examined for transfer shock. There were significant differences between transfer and native students in graduation rates, percent who were first-generation, Pell grant recipient status, and age. Overall, graduation rates for transfer students were 38.8% and 21.8% for native students. The findings indicated that 48.8% of female transfer students persisted to graduation compared to 17.3% of native female students. Male transfer students and male native students graduated at a rate of 43.1% and 22.0%, respectively. There were no significant differences in 3000 and 4000 course level GPA, high-school GPA, or ACT composite scores between the two groups.
108

Computational Algorithm to Automate As-Built Schedule Development Using Digital Daily Work Reports

Shrestha, Joseph, Jeong, H. David 01 December 2017 (has links)
As-built schedules prepared during and after construction are valuable tools for State Highway Agencies (SHAs) to monitor construction progress, evaluate contractor's schedule performance, and defend against any potential disputes. However, previous studies indicate that current as-built schedule development methods are manual and rely on information scattered in various field diaries and meeting minutes. SHAs have started to collect field activity data in digital databases that can be used to automatically generate as-built schedules if proper computational algorithms are developed. This study develops computational algorithms and a prototype system to automatically generate and visualize project level and activity level as-built schedules during and after construction. The algorithm is validated using a real highway project data. The study is expected to significantly aid SHAs in making better use of field data, facilitate as-built schedule development, monitor construction progress with higher granularity, and utilize as-built schedule for productivity analysis.
109

Astronomy in Denver: Polarization of Bow Shock Nebulae around Massive Stars

Shrestha, Joseph, Hoffman, Jennifer L., Ignace, Richard, Neilson, Hilding R. 01 June 2018 (has links)
Stellar wind bow shocks are structures created when stellar winds with supersonic relative velocities interact with the local interstellar medium (ISM). They can be studied to understand the properties of stars as well as the ISM. Since bow shocks are asymmetric, light becomes polarized by scattering in the regions of enhanced density they create. We use a Monte Carlo radiative transfer code calle SLIP to simulate the polarization signatures produced by both resolved and unresolved bow shocks with analytically derived shapes and density structures. When electron scattering is the polarizing mechanism, we find that optical depth plays an important role in the polarization signatures. While results for low optical depths reproduce theoretical predictions, higher optical depths produce higher polarization and position angle rotations at specific viewing angles. This is due to the geometrical properties of the bow shock along with multiple scattering effects. For dust scattering, we find that the polarization signature is strongly affected by wavelength, dust size, dust composition, and viewing angle. Depending on the viewing angle, the polarization magnitude may increase or decrease as a function of wavelength. We will present results from these simulations and preliminary comparisons with observational data.
110

Quantifying Uncertainty in the Residence Time of the Drug and Carrier Particles in a Dry Powder Inhaler

Badhan, Antara, Krushnarao Kotteda, V. M., Afrin, Samia, Kumar, Vinod 01 September 2021 (has links)
Dry powder inhalers (DPI), used as a means for pulmonary drug delivery, typically contain a combination of active pharmaceutical ingredients (API) and significantly larger carrier particles. The microsized drug particles-which have a strong propensity to aggregate and poor aerosolization performance-are mixed with significantly large carrier particles that cannot penetrate the mouth-throat region to deagglomerate and entrain the smaller API particles in the inhaled airflow. Therefore, a DPI's performance depends on the carrier-API combination particles' entrainment and the time and thoroughness of the individual API particles' deagglomeration from the carrier particles. Since DPI particle transport is significantly affected by particle-particle interactions, particle sizes and shapes present significant challenges to computational fluid dynamics (CFD) modelers to model regional lung deposition from a DPI. We employed the Particle-In-Cell method for studying the transport/deposition and the agglomeration and deagglomeration for DPI carrier and API particles in the present work. The proposed development will leverage CFD-PIC and sensitivity analysis capabilities from the Department of Energy laboratories: Multiphase Flow Interface Flow Exchange and Dakota UQ software. A data-driven framework is used to obtain the reliable low order statics of the particle's residence time in the inhaler. The framework is further used to study the effect of drug particle density, carrier particle density and size, fluidizing agent density and velocity, and some numerical parameters on the particles' residence time in the inhaler.

Page generated in 0.0825 seconds