Spelling suggestions: "subject:"enllaç dde compostos"" "subject:"enllaç dee compostos""
1 |
Mono y diarilderivados de platino (II) con trifenilfosfina: utilización de organomercúricos como reactivos de síntesisSeco, Miquel (Seco García) 01 December 1981 (has links)
En los últimos años, la química de los compuestos organometálicos ha experimentado un extraordinario auge debido fundamentalmente a dos hechos importantes. En primer lugar, la creciente utilización de numerosos derivados como catalizadores en procesos industriales de suma importancia (proceso oxo, proceso Wacker, polimerización de olefinas, etc.); en segundo lugar, ha obligado a revisar y ampliar muchos aspectos teóricos relacionados con la estructura y enlace de compuestos químicos.Desde que se prepararon los primeros compuestos organométalicos, la búsqueda de los factores responsables de la estabilidad de estas sustancias ha constituido el centro de estudio de los investigadores dentro de este campo de la química. En este sentido debe destacarse la mayor estabilidad y facilidad de formación de compuestos organometálicos con enlaces Q(M-C) cuando M es un átomo de uno de los grupos de elementos normales en relación a los de transición. Esta diferencia se atribuyó inicialmente a una menor energía de los enlaces Q(M-C) cuando participan elementos de transición. No obstante, los datos termodinámicos que se poseen en la actualidad indican que las energías de estos enlaces son análogas,independientemente del tipo del metal.Estos resultados permiten proponer que la distinta estabilidad observada es de origen cinético más que termodinámico, en el sentido de que con metales de transición pueden actuar mecanismos de reacción con bajas energías de activación, que conduzcan a la descomposición de los compuestos organometálicos. Si bien aún en el presente no es una cuestión totalmente resuelta, sí se dispone de algunas ideas generales, desarrolladas inicialmente por Chatt a finales de la década de los años cincuenta, en cuanto a la influencia del metal y los distintos tipos de ligandos sobre la estabilidad de los compuestos organometálicos con enlaces Q(M-C).El estudio comparativo de las propiedades de los compuestos organometálicos de los metales de transición, ha mostrado que tanto la naturaleza del metal como la de los ligandos orgánicos tiene suma importancia en cuanto a la estabilidad final del complejo. Para un determinado grupo de elementos de transición, se observa que la estabilidad de los compuestos organometálicos con enlace Q(M-C), aumenta al incrementar el peso atómico del metal. Así, los compuestos organometálicos de Pt son más estables que los análogos de Pd o Ni.La influencia del grupo orgánico sobre la estabilidad del enlace Q(M-C) se observa en que los compuestos con grupos arílicos son más estables que los que poseen grupos alquílicos. Este hecho puede atribuirse a la existencia, en estos últimos, de ciertos mecanismos de descomposición más favorables, como es el caso de la beta-eliminación. El efecto de la electronegatividad del grupo orgánico se manifiesta en que para compuestos de un mismo metal se ha encontrado una mayor estabilidad para el grupo orgánico CF3 que para CH3. La misma gradación se observa en el caso de que el grupo orgánico sea C6F5 o C6H5. Los compuestos organometálicos con enlaces Q(M-C) están generalmente estabilizados por- la presencia de ligandos neutros como fosfinas, arsinas, CO, etc., que poseen una notable capacidad pi-aceptora, que producen un aumento en la diferencia de energía entre los orbitales moleculares ocupados y vacíos del complejo. Se ha indicado también que la capacidad estabilizadora de estos ligandos puede relacionarse con la saturación que producen en las posiciones de coordinación del metal central, con lo que se dificulta el ataque de distintos reactivos o del propio disolvente al compuesto.No obstante, recientemente han logrado obtenerse algunos compuestos organometálicos estables sin ligandos neutros, del tipo MRn y MR(x-)n.Un factor de gran interés al considerar la estabilidad final de los compuestos organometálicos plano-cuadrados del tipo [MXRL2] o [MR2L2], siendo R un grupo arilo, es la presencia de uno o varios sustituyentes voluminosos en posición orto (efecto orto). Aunque en un principio el efecto orto fue explicado en base a consideraciones electrónicas y también estéreas, los resultados obtenidos en los últimos años parecen mostrar que los efectos estéreos son los más importantes al bloquear posiciones de coordinación del metal central, necesarias para iniciar determinados mecanismos de descomposición del complejo.Si bien la importancia del efecto orto sobre la estabilidad de este tipo de compuestos disminuye al aumentar el peso atómico del metal, puede ser, en ocasiones, la única causa que justifique la notable estabilidad de compuestos organometálicos con enlace Q(M-C).Una línea de investigación que se viene desarrollando en este Departamento intenta profundizar sobre los factores que afectan la estabilidad del enlace metal-carbono, principalmente en compuestos del tipo [MXRL2] o [MR2L2], siendo R un grupo aromático total o parcialmente clorado y L una fosfina terciaria o amina aromática. Hasta el momento se han obtenido compuestos donde M es Ni, Pd, Pt, Co o Fe; no obstante cabe señalar que con Pt únicamente se han estudiado compuestos del tipo [PtX(C6Cl5)(PEt3)2].Dado que ya se habían preparado compuestos de Ni y Pd del tipo [MXR(PPh.3)2] con grupos arílicos parcial o totalmente clorados, pareció interesante ampliar el estudio a compuestos análogos de platino, lo que haría posible observar, especialmente, la influencia del número y posición de los átomos de cloro existentes en el anillo aromático, sobre la estabilidad y reactividad de estos compuestos.Así mismo, este estudio permitiría comparar los resultados con los obtenidos anteriormente en las series análogas con los otros metales indicados.La conocida inercia de los complejos de platino, junto con el gran volumen que posee la PPh3, impedía la aplicación de los métodos tradicionales de síntesis basados en el uso de organomagnésicos y organoliticos; por lo que fue necesario ensayar nuevos métodos capaces de conducir a los compuestos organometálicos de platino: previstos en un principio.En este sentido, se procedió al estudio de la acción de los derivados organomercúricos sobre el dihalocomplejo de plata, no cis-[PtCl2(PPh3)2]. Mientras que en solución el proceso no condujo a resultados satisfactorios, cuando la reacción se realizó en estado fundido, se obtuvieron los organoderivados de platino con un rendimiento suficiente como para considerar el proceso como un buen método de síntesis de estas sustancias.En este trabajo se describe la preparación y estudio de compuestos del tipo trans-[PtClR(PPh3)2] siendo R= Ph; 2,5-C6H3Cl2; 2,3,4- y 2,4,6-C6H2Cl3; 2,3,4,5-, 2,3,4,6- y 2,3,5,6-C6HCl4 y C6Cl5, mediante la acción de los organoderivados de mercurio, HgR2, sobre el cis-[PtCl2(PPh3)2], efectuando la reacción en estado fundido. Por otra parte, también se estudia la acción de los HgR2 sobre el compuesto Pt(PPh3)3, que conduce a la obtención de las sustancias de fórmula [(PPh3)2RPt-HgR], con enlace directo Pt-Hg. Estos compuestos han resultado ser sumamente interesantes ya que son precursores de los complejos de platino con dos grupos orgánicos del tipo [ptR2(PPh3)2] o [ptRR'(PPh3)2].Los nuevos compuestos obtenidos han sido caracterizados mediante sus análisis elementales, temperaturas de fusión o descomposición, conductividades molares en solución acetónica, susceptibilidades magnéticas, espectros electrónicos y de infrarrojo, espectros Raman, espectros de resonancia magnética nuclear de 1H y de 31P.Así mismo se ha estudiado la reactividad que presentan todas estas sustancias frente a reactivos como halógenos, cloruro de hidrógeno, ácido trifluoroacético, y en procesos de metátesis y de sustitución de fosfinas, Cabe destacar que la acción del ácido trifluoroacético frente a los compuestos que contienen enlace directo Pt-Hg, provoca la rotura de éste, conduciendo finalmente a una nueva serie de compuestos de Pt(III) con ligando trifluoroacetato, del tipo [Pt(CF3CO2)R(PPh3)2] .
|
Page generated in 0.0554 seconds