• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Entwicklung potenzieller (ir-)reversibler Inhibitoren der Enoyl-ACP-Reduktase FabI in S. aureus/ E. coli und der Thiolase FadA5 in M. tuberculosis / Development of potential irreversible/reversible inhibitors of the enoyl-ACP reductase FabI in S. aureus/ E. coli and of the thiolase FadA5 in M. tuberculosis

Ferraro, Antonio January 2021 (has links) (PDF)
Antimikrobielle Resistenzen stellen eine weltweite Herausforderung dar und sind mit einer hohen Morbidität und Mortalität verbunden. Die Letalitätsrate durch multiresistente Keime steigt stetig an, weshalb die WHO im Jahr 2017 eine Prioritätenliste resistenter Keime erstellte, die die Entwicklung neuer Antibiotika vorantreiben soll. Diese umfasst vornehmlich gramnegative Bakterien, da diese aufgrund ihres Zellaufbaus sowie diverser Resistenzmechanismen besonders widerstandsfähig gegenüber dem Angriff vieler Antibiotika sind. Einige grampositive Keime (z.B. S. aureus) stehen ebenfalls auf dieser Liste und stellen eine große Herausforderung für die Medizin dar. Infolgedessen ist die Entwicklung neuer Antiinfektiva mit neuen Angriffspunkten gegen resistente Pathogene zwingend nötig, um mit bisherigen Resistenzen umgehen zu können. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Synthese von kovalent (reversibel) bindenden Inhibitoren der Enoyl-ACP-Reduktase FabI (Staphylococcus aureus, Escherichia coli) und der Thiolase FadA5 (Mycobacterium tuberculosis). Beide Enzyme sind essenziell für das Überleben des jeweiligen Bakteriums. FabI ist ein wichtiges und geschwindigkeitsbestimmendes Schlüsselenzym der Fettsäuresynthese Typ II diverser Bakterien. Hierbei werden wichtige Phospholipide hergestellt, die für den Aufbau der Zellmembran nötig sind. Schiebel et al. ist es gelungen, einen potenten Inhibitor für den Erreger S. aureus sowie E. coli zu entwickeln und zu charakterisieren. Ausgehend von dieser Verbindung wurde eine Substanzbibliothek mit verschiedenen „warheads“ hergestellt. Hierbei wurde die Verknüpfung zwischen dem Pyridon-Grundgerüst und der elektrophilen Gruppe sowie die über den Ether verknüpften aromatischen Ringsysteme variiert. Diese Verbindungen wurden hinsichtlich ihrer inhibitorischen Aktivität am jeweiligen Enzym getestet. Anschließend wurde von Verbindung 32 und 33, die jeweils eine gute Inhibition des Enzyms aufweisen, der IC50-Wert gemessen. Beide Verbindungen weisen eine 50-prozentige Reduktion der Enzymaktivität im mittleren nanomolaren Bereich auf. Zusätzlich wurde Verbindung 32 in einem sogenannten „jump-dilution“-Assay auf kovalente Inhibition getestet. Durch dieses Experiment konnte eine kovalente Inhibition des Enzyms ausgeschlossen werden. Die Reaktivität der eingesetzten „warheads“ wurde gegenüber einem Tripeptid mittels eines LC/MS-Iontrap-Systems bestimmt. Die untersuchten Verbindungen zeigten keine signifikante Reaktion mit der im Tripeptid eingebauten nukleophilen Aminosäure Tyrosin, deren Nukleophilie bei dem pH-Wert des Tests (pH = 8.2 und 10.8) nicht hoch genug ist. Um einen Einblick in den Bindemodus der Verbindungen zu erhalten, wurden ferner Kristallisationsversuche durchgeführt. Die erhaltenen Kristallstrukturen zeigen, dass die Verbindungen mit dem gewünschten Bindemodus am Zielenzym binden, aber eine kovalente Modifizierung des Tyrosins146 durch die eingesetzten „warheads“ aufgrund der großen Entfernung (6 Å zwischen elektrophiler Gruppe und Tyrosin146), unwahrscheinlich ist. Zusätzlich wurden die physikochemischen Eigenschaften (Stabilität, Wasserlöslichkeit und logP) der Verbindung 32 sowie Verbindung 33 charakterisiert. M. tuberculosis ist der Erreger der global verbreiteten Infektionskrankheit Tuberkulose (TB), die zu den zehn häufigsten Todesursachen weltweit gehört. Das Bakterium kann das im menschlichen Körper vorkommende Cholesterol metabolisieren und nutzt dessen Abbauprodukte als wichtige Kohlenstoffquelle. Die Thiolase FadA5 ist bei diesem Abbau ein wichtiges Enzym und konnte als potenzielles innovatives Target für neue Antibiotika definiert werden. Durch Dockingstudien konnten zwei potenzielle Leitstrukturen als Inhibitoren der Thiolase FadA5 identifiziert werden. Im Rahmen dieser Arbeit wurden die vorgeschlagenen Strukturen mit dem gewünschten „warhead“ synthetisiert und hinsichtlich ihrer inhibitorischen Aktivität gegenüber dem Enzym untersucht. Die Zielverbindungen zeigen keine signifikante Hemmung sowie kovalente Bindung über die eingesetzten „warheads“ an die Thiolase FadA5. / Antimicrobial resistance poses a global challenge and is associated with high morbidity and mortality. The case fatality rate of infections caused by multidrug-resistant pathogens continues to be on the rise, causing the WHO to compile a priority pathogens list that is supposed to advance the development of new antimicrobial compounds. The list is mainly comprised of gramnegative bacteria, since these are especially resilient to many antibiotics. This is due to their cellular structure and various mechanisms of resistance. Some grampositive bacteria are also a danger to public health and are therefore part of this list. Consequently, there is an urgent need for the development of new antiinfectives with novel modes of action, so that the current resistance situation can be adequately addressed. This work is concerned with the development and synthesis of covalent reversible inhibitors of the enoyl-ACP reductase FabI (Staphylococcus aureus, Escherichia Coli) and the thiolase FadA5 (Mycobacterium tuberculosis). Both enzymes are critically important for the survival of the respective bacteria. FabI is an essential and rate determining enzyme of the type II fatty acid synthesis of various bacteria. A number of important phospholipids required for the cell membrane are biosynthesized via this metabolic pathway. Schiebel et al. were able to develop and characterize a potent inhibitor for S. aureus and E. Coli. Using this compound as a starting point, a library of compounds carrying various “warheads” was synthesized. Further structural variations were introduced by using different linkers between the pyridone scaffold and the electrophilic group as well as diverse aromatic rings connected via the ether bridge. These compounds were assayed concerning their inhibitory activity at the respective enzyme. Of these, substances 32 and 33 showed good inhibition of the enzyme, prompting the determination of the IC50 values. The two substances were able to reduce enzymatic activity by 50% at nanomolar concentration levels. In addition, substance 32 was characterized concerning its ability to covalently inhibit its molecular target by means of the so-called jump dilution assay. This experiment showed no covalent inhibition of the target enzyme. The individual reactivity of the warhead moieties present in the library was determined against a synthetic tripeptide by using a LC/MS iontrap system. All the examined compounds showed no reaction with the nucleophilic amino acid tyrosine contained in the tripeptide at significant levels, which indicates that its nucleophilicity is insufficient at the pH of the assay (pH = 8,2 and 10,8, respectively). Crystallization experiments were conducted to ascertain the binding mode of the compounds. The crystal structures showed the substances binding to the enzyme in the desired pose, yet a covalent modification of tyrosine146 remains unlikely due to the large distance (6 Å) between the electrophilic moiety and the amino acid. Additionally, some physicochemical properties (Stability, aqueous solubility and logP) of compounds 32 and 33 were characterized. M. tuberculosis is the causative pathogen of the globally occurring infectious disease tuberculosis, which belongs to the 10 most frequently occurring causes of death worldwide. The germ is able to metabolize the cholesterol present in the human body and uses its degradation products as an important carbon source. The thiolase FadA5 is involved in this metabolic pathway and was identified as a potentially innovative target for novel antibiotics. Docking studies enabled the identification of two potential lead structures for inhibitors of FadA5. In this work, the proposed structures carrying the desired warheads were synthesized and characterized concerning their inhibitory activity at the target enzyme. The target compounds showed no significant inhibition or covalent binding to FadA5.
2

Virtuelles Screening nach einer neuen Inhibitorklasse der Enoyl-ACP-Reduktase InhA aus Mycobacterium tuberculosis / Virtual screening for a new inhibitor class of the enoyl-ACP-reductase InhA of Mycobacterium tuberculosis

Waltenberger, Constanze Ricarda Maria January 2012 (has links) (PDF)
Die Zahl der Tuberkuloseerkrankungen ist in den letzten Jahrzehnten weltweit gestiegen. Da es an innovativen Antituberkulotika mangelt, werden nach wie vor Medikamente der ersten Generation eingesetzt. Das wachsende Problem sind multi-resistente und extrem-resistente Bakterienstämme, die kaum oder gar nicht auf die medikamentöse Therapie ansprechen. Charakteristisch für M. tuberculosis ist eine dicke Zellwand. Der Aufbau der Zellwand ermöglicht es dem Bakterium in den Makrophagen zu persistieren und sich dort zu vermehren. Die Zellwand ist reich an Mykolsäuren und so wenig durchlässig für Fremdstoffe. Das mykobakterielle Zellwandskelett kann man in zwei Teile unterteilen, den Zellwandkern und die äußere Lipidhülle. Die freien Lipide der äußeren Lipidhülle dienen als Signalmoleküle im Krankheitsverlauf und interkalieren mit den Mykolsäuren des Zellwandkerns. M. tuberculosis besitzt für die Fettsäurebiosynthese zwei Enzymkomplexe: Die Typ-I-Fettsäuresynthase, die auch in Säugetieren zu finden ist, produziert Fettsäuren von C16- bis C26-Kettenlänge, die dann in der Typ-II-Fettsäuresynthase (FAS-II) zu Meromykolsäuren verlängert werden. Im Synthesezyklus des FAS-II sind mehrere monofunktionale Enzyme hintereinander geschaltet. Wird eines dieser Enzyme in seiner Funktion gestört, kumulieren Zwischenprodukte und benötigte Zellwandlipide können nicht synthetisiert werden. In der Folge wird die Zellwand instabil und das Bakterium stirbt. Die mykobakterielle Lipidbiosynthese ist somit ein ideales Target für die Entwicklung neuer Antituberkulotika. Ziel dieser Arbeit war es, eine neue Inhibitorklasse des FAS-II Enzyms InhA des M. tuberculosis mittels virtuellem Screening zu finden. Für das virtuelle Screening wurden drei aufeinander aufbauende Pharmakophorhypothesen entwickelt und mit diesen zwei unabhängige Datenbanken durchsucht. Als Grundlage für die Berechnungen des virtuellen Screenings diente die PDB Röntgenkristallstruktur 2h7m mit dem Liganden 1-Cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidin-3-carboxamid. Für die Erstellung der Pharmakophorhypothesen wurden zuerst die Strukturen des Enzyms mit und ohne Ligand bezüglich ihrer Konformationsunterschiede vor allem im Bereich der Bindetasche analysiert. Als nächstes wurden die Wechselwirkungen des Liganden mit den Aminosäuren der Bindetasche und dem Cofaktor näher analysiert und die verschiedenen Wechselwirkungsarten hinsichtlich ihrer Relevanz für eine inhibitorische Aktivität beurteilt. Schließlich wurde eine Bindetaschenanalyse durchgeführt und Hotspots für unterschiedliche chemische Funktionalitäten berechnet. Für das Datenbankenscreening wurden das ZINC 'drug-like' Subset (2005) und CCGs MOE 2006 Vendor Compound 3D Collection verwendet, beides Datenbanken exklusiv kommerziell erhältlicher Verbindungen. Das ZINC 'drug-like' Subset wurde über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert. Von den verbleibenden Verbindungen wurde eine Konformerendatenbank berechnet. Die MOE 2006 Vendor Compound 3D Collection lag bereits als Konformerendatenbank vor und wurde für das Screening 'as-is' verwendet. Mit den Pharmakophorhypothesen I und II wurde das reduzierte ZINC 'drug-like' Subset gescreent. Für die Treffer wurden Fingerprints berechnet, sie danach mithilfe des Tanimotokoeffizienten nach ihrer Ähnlichkeit in Cluster eingeteilt und visuell analysiert; 149 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die MOE Konformerendatenbank wurde ebenso über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert und mit der Pharmakophorhypothese III gescreent, 28 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die Dockingsimulationen wurden mit den Programmen MOE Dock und Autodock durchgeführt. Die Ergebnisse wurden numerisch ausgewertet und innerhalb der Bindetasche relativ zur jeweiligen zugrunde liegenden Pharmakophorhypothese visuell analysiert; 27 Substanzen wurden schließlich für die Testungen ausgewählt. Die Testungen erfolgten mit einem enzymatischen Assay und einem Assay an attenuierten M. tuberculosis Für die Etablierung des enzymatischen Assays wurde das Enzym InhA mittels Vektortransformation in E. coli überexprimiert und säulenchromatographisch aufgereinigt. Das Substrat 2-trans-Octenoyl-Coenzym A wurde synthetisiert. Von den 27 ausgewählten Substanzen waren 9 im Handel erhältlich und wurden schließlich auf ihre inhibitorische Aktivität getestet. Es wurden ein Thiazolidin-2,4-dion, ein 2-Thioxoimidazolidin-4-on und ein Sulfonamid als aktive Substanzen gefunden. / Worldwide the number of tuberculosis cases has increased in the decades. Since there is a lack of innovative anti-tuberculosis drugs, the first-generation drugs are still used as gold standard. Therefore, strains of mycobacteria, that respond only little or not at all to drug therapy, picture a growing problem. Characteristic of M. tuberculosis is its thick cell wall. The structure of the cell wall allows the bacterium to persist in the macrophages and to multiply there. The cell wall is rich in mycolic acids and, in this, little permeable to xenobiotics. The mycobacterial cell wall skeleton can be divided into two parts, the cell wall core and the outer lipid envelope. The free lipids of the outer lipid envelope serve as signalling molecules in course of the disease, and intercalate with the mycolic acids of the cell wall core. For fatty acid biosynthesis M. tuberculosis has two enzyme complexes: the type I fatty acid synthase, which is also found in mammals, produces fatty acids of C16 to C26 chain length; subsequently, these are extended to meromycolic acids in the type II fatty acid synthase (FAS II). The synthesis cycle of FAS-II consists of mono-functional enzymes that build up on each other. If one of these enzymes is disturbed in its functionality, intermediates accumulate and required cell wall lipids can not be synthesized. As a result, the cell wall turns unstable and the bacterium dies. Therefore, the mycobacterial lipid biosynthesis is an ideal target for developing new antituberculous drugs. The aim of this study was to develop a new inhibitor class of the mycobacterial FAS-II enzyme InhA by means of virtual screening. For the virtual screening three consecutive pharmacophore hypotheses were developed, and with these two independent databases were screened. As a basis for the calculations of the virtual screening the PDB X-ray crystal structure 2h7m with the ligand 1-cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide was used. In order to construct the pharmacophore hypotheses, first, the structures of the enzyme with and without a ligand were analyzed for their conformational differences, in particular with respect to the geometry of the binding pocket. Next, the interactions of the ligand with the amino acids of the binding pocket and with the cofactor were analyzed in detail; thereby, the different types of interactions were assessed in terms of their relevance for the inhibitory activity. Finally, a hot spot analysis of the active site was carried out for different chemical functionalities. The ZINC 'drug-like' subset (2005) and CCG's 2006 Vendor MOE 3D compound collection were used for the database screening, both being databases of commercially available compounds. The ZINC 'drug-like' subset was numerically reduced by a hierarchical filter customized for InhA; of the remaining compounds a database of conformers was calculated. The MOE 2006 Vendor 3D Compound Collection was already available as a conformer database. The reduced ZINC 'drug-like' subset was screened with the pharmacophore hypotheses I and II. After calculating fingerprints the hits were clustered according to their similarity using the Tanimoto coefficient and visually analyzed; 149 compunds were selected for the docking simulations. The MOE conformers database also was numerically reduced by a hierarchical filter customized for InhA, and then screened with the pharmacophore hypothesis III, 28 compounds were chosen for the docking simulations. The docking simulations were performed with the programs MOE Dock and Autodock. The results were evaluated numerically, and analyzed visually within the binding pocket relative to the respective underlying pharmacophore hypothesis. Finally, 27 substances were selected for testing. The tests were carried out using an enzymatic assay and an assay on attenuated M. tuberculosis. For establishing the enzymatic assay, the enzyme InhA was overexpressed using vector transformation into E. coli and purified by column chromatography. The substrate 2-trans-octenoyl-coenzyme A was synthesized. Of the 27 selected compounds 9 substances were commercially available and were tested for their inhibitory activity. A thiazolidine-2,4-dione, a 2-thioxoimidazolidine-4-one and a sulfonamide were found to be active.
3

Untersuchungen von Thiazolidindionen und verwandten Fünfringheterozyklen als Leitstruktur potenzieller Inhibitoren der Enoyl-ACP-Reduktase InhA des Mycobacterium tuberculosis / Analysis of thiazolidindiones and related five membered heterocycles as lead structures of novel inhibitors of enoyl-ACP-reductase InhA from Mycobacterium tuberculosis

Vogel, Simon January 2015 (has links) (PDF)
Weltweit zählt die Tuberkulose zu den tödlichsten und am weitesten verbreiteten Infektionskrankheiten. Missstände in der ohnehin komplexen Therapie einerseits und fehlende Entwicklung neuartiger adäquater Wirkstoffe andererseits, führten zur Entstehung von multi- und sogar total-resistenten Keimen. Der Haupterreger ist das Mycobacterium tuberculosis. Charakteristisch für Mykobakterien ist eine dicke und undurchlässige wachsartige Zellwand mit einem großen Anteil an bestimmten Fettsäuren. Die mykobakterielle Biosynthese dieser Fettsäuren unterscheidet sich stark von eukaryotischen Zellen. Die selektive Beeinflussung dieses Systems führt zu nicht überlebensfähigen Mykobakterien und stellt somit ein idealer Angriffspunkt für Arzneistoffe dar. Die vorliegende Arbeit befasst sich mit der Entwicklung neuartiger direkter Hemmstoffe von InhA, einem für den Zellwandaufbau des Mycobacterium tuberculosis essenziellem Enzym. Es wurden zwei photometrische gekoppelt-enzymatische Assay-Systeme im 96-Well-Format entwickelt, die sich das Absorptions- bzw. Fluoreszenzverhalten des Coenzyms NADH zu Nutze machen. Das hierzu benötigte Enzym InhA wurde überexprimiert und aufgereinigt. Mehrere Synthesemethoden für das im Testverfahren verwendete Substrat 2-trans-Octenoyl-CoA (2toCoA) wurden etabliert. Die etablierten Assay-Systeme wurden mit Hilfe von Positivkontrollen validiert. Grundlegende Experimente zur Errichtung einer substratunabhängigen orthogonalen Methode mittels MST wurden getätigt. Basierend auf den Ergebnissen eines in Vorarbeiten durchgeführten virtuellen Screenings wurden erste potenzielle Inhibitoren kommerziell erworben und getestet. Nachfolgend wurde mit der Synthese von Derivaten begonnen, welche auf iterativem Wege optimiert wurden (Testung – Docking – Synthese neuer Derivate). Hierdurch wurde eine umfassende Substanzbibliothek bestehend aus insgesamt 254 Verbindungen aufgebaut. Diese setzte sich aus unterschiedlich substituierten Thiazolidin-2,4-dionen- und Thiazolin-2-on-Derivaten, Derivaten der ähnlich strukturierten Fünfring-Heterozyklen Rhodanine, Thiohydantoine und Hydantoine und weiteren Strukturklassen bestehend aus Biphenylether-, Pyrrolidoncarboxamid-, Pyridon- und Sulfonamid-Derivaten zusammen. Die Verbindungen wurden entweder selbst synthetisiert, kommerziell erworben oder von Kooperationspartnern bezogen. Neben der Etablierung zuverlässiger und effizienter Syntheserouten stand hierbei ebenso die strukturelle Aufklärung der stereochemischen Verhältnisse der Produkte im Mittelpunkt. Die Verbindungen der aufgebauten Substanzbibliothek wurden mit dem etablierten InhA-Testsystem auf ihre inhibitorischen Eigenschaften gegenüber InhA untersucht. Soweit möglich wurden Struktur-Aktivitätsbeziehungen abgeleitet. Insbesondere einige disubstituierte Thiazolidindione zeigten eine schwache Hemmung von bis zu 25 %. Die zur Aufklärung des Inhibitionsmechanismus durchgeführten Experimente deuten auf eine unkompetitive Hemmung hin. Bei den direkten Testungen an Mykobakterien konnten die inhibitorischen Eigenschaften hingegen nicht bestätigt werden. Weiterhin wurden Testungen an Cystein- und Serin-Proteasen von Erregern anderer Infektionskrankheiten durchgeführt. Das Thiazolinon SV102 wurde hierbei als nicht-kompetitiver Hemmstoff von Cathepsin B mit einem Ki-Wert von 1.3 µM identifiziert. Die Synthese und Testung weiterer Thiazolin-2-on-Derivate sowie Cokristallisationsversuche mit Cathepsin B sind somit in Betracht zu ziehen. Die getesteten Thiazolidindion-Derivate der Substanzbibliothek zeigten hierbei mittelstarke bis gute Hemmeigenschaften, die ebenfalls an den Erregern beobachtbar waren. Relativiert werden diese vielversprechenden Ergebnisse allerdings durch eine ebenfalls zu beobachtende Zytotoxizität. Weiterhin konnte eine antibakterielle Wirkung der untersuchten Verbindungen in zellulären Assay-Systemen nicht gezeigt werden. Abschließend wurde die Eignung der Thiazolidindione und verwandter Fünfringheterozyklen als Leitstruktur für potenzielle InhA-Inhibitoren, aber auch die Eignung dieser Verbindungsklasse als potenzielle Leitstruktur per se diskutiert. / Tuberculosis is one of the most deadly infectious diseases and it is highly prevalent world-wide. The issues arising from the complexity of the current treatments schemes as well as the lacking development of effective new drugs have led to the formation of multi- or even totally drug-resistant strains of Mycobacterium tuberculosis which is known as the major microbial species causing tuberculosis. Mycobacteria are characterized by a unique, thick and waxy cell wall that functions as a nearly impermeable barrier due to its high concentration of mycolic acids. The biosynthesis of these fatty acids requires the presence of a specific set of mycobacterial enzymes that differ markedly from their eukaryotic counterparts. Disturbance in the proper formation of this essential cell wall unvariably interferes with mycobacterial survival. Thus, the mycobacterial fatty acid synthesis pathway is an attractive target for the development of selective new drugs against Mycobacterium tuberculosis. The aim of this work was the synthesis and optimization of thiazolidindiones and related five membered heterocycles as lead structures for the development of novel, direct inhibitors of InhA, an essential enzyme in the biosynthesis of mycolic acids. Two coupled photometric enzyme assays that monitor the absorption of the involved cofactor NADH were developed in a 96-well-plate format. For this purpose, the enzyme InhA was recombinantly expressed and purified from E.coli. Several routes of synthesis for its substrate 2-trans-octenoyl-CoA were established. Assay systems were validated by characterizing positive controls known from the literature, and an orthogonal analysis method was introduced by using microscale thermophoresis. Thiazolidindiones as lead compound structure were discovered by performing a virtual screening campaign in preliminary works. Several substances were commercially acquired and tested in the established InhA-assay-system. Based on these results the syntheses of further compounds were started and optimized in an iterative manner (testing – docking – synthesis of new derivatives). Thus, a large compound library of 254 substances was built up. It consists of different substituted thiazolidindiones, thiazolinons and related five membered heterocycles such as rhodanines, thiohydantoines and hydantoines as well as further compound classes, namely, derivatives of biphenylethers, pyrrolidoncarboxamides, pyridines and sulfonamides. The compounds were either synthesized, received from collaboration partners, or acquired commercially. Concerning the synthetic work, the focus was on developing effective routes of synthesis, elucidating reaction mechanisms and determining the stereochemical properties of the received products. The compound library was subsequently tested against InhA by using the previously established assay systems. As far as possible, structure-activity relationships were derived. In particular, some disubstitued thiazolidindiones showed moderate inhibitory properties of up to 25 % when tested against the purified enzyme. Kinetic experiments performed to obtain information about the mode of inhibition indicated that thiazolidinediones acted as uncompetitive inhibitors of InhA. However, these results could not be confirmed in direct measurements using mycobacteria. Further measurements against various cysteine- and serine-proteases were performed. The thiazolinone SV102 was identified as non-competitive inhibitor of cathepsin B (Ki = 1.3 µM). Consequently, synthesis of new derivates as well as co-crystallization experiments should be taken into consideration. Thiazolidinedione derivatives also showed proper inhibition of isolated proteases. This inhibitory activity also was also observed in direct measurements against trypanosoma and leishmania but was actually accompanied by a certain extent of cytotoxicity. Finally, the question was addressed of whether thiazolidindiones and related five membered heterocycles should be seen as a privileged scaffold in drug development, or just as promiscuous binders that should be excluded from drug discovery.
4

Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall / Computermethoden zur Bestimmung von Protein-Ligand Verweilzeiten in bakteriellen Enoyl-ACP Reduktasen und Vorhersage der Permeabilitätswahrscheinlichkeit kleiner Moleküle gegenüber der \(Mycobacterium\) \(tuberculosis\) Zellwand

Merget, Benjamin January 2015 (has links) (PDF)
\textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time $t_R$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of $t_R$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect $t_R$. Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations. Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental $ln(t_R)$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses. Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix $\alpha 6$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands. \textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version. Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation. / \textbf{Molekulare Determinanten von Wirkstoff-Angriffsziel Verweilzeiten bakterieller Enoyl-ACP Reduktasen.} In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini\-täts\-geleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit $t_R$ berücksichtigt werden, da diese oft eine starke Korrelation zur \textit{in vivo} Wirksamkeit der Substanzen aufweist. Rationale Optimierung von $t_R$ ist jedoch auf Grund eines Mangels an struktureller Information über den Übergangszustand der Ligandbindung und Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio\-synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA ist das FabI Enzym des Organismus \textit{Mycobacterium tuberculosis} und kann durch Substanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA durch langsam-bindende (``slow-onset'') Inhibitoren mit der Ordnung der flexibelsten Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kinetisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften eines Liganden $t_R$ beeinflussen. Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wiederkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich einer 5'-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde mittels MD Simulationen nachfolgend analysiert. Darüber hinaus wurden ``Steered MD'' (SMD) Simulationen als MD Technik für umfangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus dem FabI Enzym von \textit{Staphylococcus aureus} zu untersuchen. Dieser Ansatz resultierte in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentellen Verweilzeit $ln(t_R)$ dieser Inhibitoren als Funktion der berechneten maximalen freien Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen Dockingposen vorherzusagen. Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes (EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibitionsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweilzeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen. Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor \textbf{PT70}) gleicht, während eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix $\alpha 6$ dem EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kristallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird durch die Beobachtung hervorgehoben, dass die Ketten A und B' eines InhA-\textbf{PT155}-Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von schnell-reversiblen (``rapid reversible'') Liganden zu unterscheiden. \textbf{Vorhersage von \textit{Mycobacterium tuberculosis} Zellwand Permeabilität.} Die Zellwand von \textit{M.~tuberculosis} erschwert die antimycobakterielle Wirkstofffindung auf Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikaresistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum wirkstoffähnlicher Moleküle gegen diesen Erreger (``Druggability Space'') einzugrenzen, wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater statistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines normalverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimycobakteriellen -- und somit höchstwahrscheinlich permeablen -- Substanzen beruht. Dieser Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online Service und als lokale Kommandozeilenversion implementiert. Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc\-PermCheck wurde verwendet um den chemischen Permeabilitätsraum von \textit{M.~tuberculosis} anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen. Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die Interaktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maximalen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit einem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen.
5

In silico structure-based optimisation of pyrrolidine carboxamides as Mycobacterium tuberculosis enoyl-ACP reductase inhibitors / In silico Struktur-basierte Optimierung von Pyrrolidin-Carbonsäureamiden als Mycobacterium tuberculosis Enoyl-ACP-Reduktase-Inhibitoren

Narkhede, Yogesh January 2018 (has links) (PDF)
The high infection rates and recent emergence of extremely drug resistant forms of Mycobacterium tuberculosis pose a significant challenge for global health. The NADH- dependent enoyl-ACP-reductase InhA of the type II mycobacterial fatty acid biosynthesis pathway is a well-validated target for inhibiting mycobacterial growth. InhA has been shown to be inhibited by a variety of compound series. Prominent classes of InhA inhibitors from literature include diaryl ethers, pyrrolidine carboxamides and arylamides which can be subjected to further development. Despite the progress in this area, very few compounds are in clinical development phase. The present work involves a detailed computational investigation of the binding modes and structure-based optimisation of pyrrolidine carboxamides as InhA inhibitors. With substituents of widely varying bulkiness, the pyrrolidine carboxamide dataset presented a challenge for prediction of binding mode as well as affinity. Using advanced docking protocols and in-house developed pose selection procedures, the binding modes of 44 compounds were predicted. The poses from docking were used in short molecular dynamics (MD) simulations to ascertain the dominant binding conformations for the bulkier members of the series. Subsequently, an activity-based classification strategy could be developed to circumvent the affinity prediction problems observed with this dataset. The prominent motions of the bound ligand and the active site residues were then ascertained using Essential Dynamics (ED). The information from ED and literature was subsequently used to design a total of 20 compounds that were subjected to extensive in-silico evaluations. Finally, the molecular determinants of rapid-reversible binding of pyrrolidine carboxamides were investigated using long MD simulations. / Hohe Infektionsraten und das Auftreten von multiresistenten Formen von Mycobacterium tuberculosis stellen eine große Herausforderung f ̈ ur das globale Gesundsheitswesen dar. Die NADH-abh ̈angige Enoyl-ACP-Reduktase des mykobakteriellen Fetts ̈aure-Biosynthesewegs II, InhA, ist ein gut validiertes Target zur Hemmung des mykobakteriellen Wachstums. Es wurde gezeigt, dass InhA durch eine Vielzahl von unterschiedlichen Verbindungs- klassen gehemmt wird. Zu den bekanntesten Klassen von InhA-Inhibitoren aus der Literatur geh ̈ oren Diphenylether, Pyrrolidincarboxamide und Arylamide, die zur weiteren Entwicklung verwendet werden k ̈onnen. Trotz der Fortschritte in diesem Bereich sind sehr wenige Verbindungen in einer klinischen Entwicklungsphase. Die vorliegende Arbeit beinhaltet eine detaillierte computergest ̈ utzte Untersuchung der Bindungsmodi und die strukturbasierte Optimierung von Pyrrolidincarboxamiden als InhA-Inhibitoren. Aufgrund von Substituenten mit stark variierendem Raumanspruch stellt der Pyrrolidin- carboxamid-Datensatz eine Herausforderung f ̈ ur die Vorhersage von Bindungsmodi und Affinitit ̈aten dar. Mit aufw ̈andigen Docking-Protokollen und speziell zu diesem Zweck entwickelten Posen-Auswahlverfahren wurden die Bindungsmodi f ̈ ur 44 Verbindungen vorhergesagt. Die Posen des Dockings wurden in kurzen Molekulardynamik (MD) Sim- ulationen verwendet, um die bevorzugten Bindungskonformationen f ̈ ur die r ̈ aumlich anspruchsvollen Vertreter des Datensatzes zu ermitteln. Anschließend konnte eine akt- ivit ̈atsbasierte Klassifizierungsstrategie entwickelt werden, um die in diesem Datensatz beobachteten Probleme in der Affinit ̈ atsvorhersage zu umgehen. Die wesentlichen Bewe- gungen des gebundenen Liganden und der Aminos ̈auren der Bindetasche wurden daraufhin mit Essential Dynamics (ED) ermittelt. Informationen aus der ED-Analyse und der Literatur wurden anschließend verwendet, um insgesamt 20 Verbindungen zu entwerfen, die umfangreichen in-silico-Bewertungen unterzogen wurden. Schließlich wurden die molekularen Determinanten der schnell-reversiblen Bindung von Pyrrolidincarboxamiden unter Verwendung von langen MD Simulationen untersucht.
6

Structure-Based Drug Design on Enzymes of the Fatty Acid Biosynthesis Pathway / Strukturbasiertes Wirkstoffdesign an Enzymen der Fettsäurebiosynthese

Schiebel, Johannes January 2013 (has links) (PDF)
Während die Wirkung der meisten gebräuchlichen Antibiotika auf einer Beeinträchtigung wichtiger bakterieller Prozesse beruht, wirken manche Substanzen durch die Störung der Zellmembran-Struktur. Da Fettsäuren ein essentieller Bestandteil von Membran-Phospholipiden sind, stellt die bakterielle Fettsäurebiosynthese II (FAS-II) einen relativ wenig erforschten, aber dennoch vielversprechenden Angriffspunkt für die Entwicklung neuer Antibiotika dar. Das wichtige Antituberkulotikum Isoniazid blockiert die mykobakterielle Fettsäurebiosynthese und ruft dadurch morphologische Änderungen sowie letztlich die Lyse des Bakteriums hervor. Eine wichtige Erkenntnis war, dass Isoniazid den letzten Schritt des FAS-II Elongationszyklus inhibiert, der durch die Enoyl-ACP Reduktase katalysiert wird. Darauf aufbauend wurden mehrere Programme ins Leben gerufen, die sich zum Ziel gesetzt hatten, neue Moleküle zu entwickeln, welche dieses Protein verschiedener Pathogene hemmen. Die S. aureus Enoyl-ACP Reduktase (saFabI) ist von besonders großem Interesse, da drei vielversprechende Inhibitoren dieses Proteins entwickelt werden konnten, die momentan in klinischen Studien eingehend untersucht werden. Trotz dieser Erfolgsaussichten waren zum Zeitpunkt, als die vorliegenden Arbeiten aufgenommen wurden, keine Kristallstrukturen von saFabI öffentlich verfügbar. Daher war es eines der Hauptziele dieser Doktorarbeit, auf der Basis von kristallographischen Experimenten atomar aufgelöste Modelle für dieses wichtige Protein zu erzeugen. Durch die Entwicklung einer verlässlichen Methode zur Kristallisation von saFabI im Komplex mit NADP+ und Diphenylether-Inhibitoren konnten Kristallstrukturen von 17 verschiedenen ternären Komplexen gelöst werden. Weitere kristallographische Experimente ergaben zwei apo-Strukturen sowie zwei Strukturen von saFabI im Komplex mit NADPH und 2-Pyridon-Inhibitoren. Basierend auf der nun bekannten saFabI-Struktur konnten Molekulardynamik-Simulationen durchgeführt werden, um zusätzliche Erkenntnisse über die Flexibilität dieses Proteins zu erhalten. Die so gewonnenen Informationen über die Struktur und Beweglichkeit des Enzyms dienten in Folge als ideale Grundlage dafür, den Erkennungsprozess von Substrat und Inhibitor zu verstehen. Besonders bemerkenswert dabei ist, dass die verschiedenen saFabI Kristallstrukturen Momentaufnahmen entlang der Reaktionskoordinate der Ligandenbindung und des Hydrid-Transfers repräsentieren. Dabei verschließt der so genannte Substratbindungsloop das aktive Zentrum des Enzyms allmählich. Die außergewöhnlich hohe Mobilität von saFabI konnte durch molekulardynamische Simulationen bestätigt werden. Dies legt nahe, dass die beobachteten Änderungen der Konformation tatsächlich an der Aufnahme und Umsetzung des Substrates beteiligt sind. Eine Kette von Wassermolekülen zwischen dem aktiven Zentrum und einer wassergefüllten Kavität im Inneren des Tetramers scheint für die Beweglichkeit des Substratbindungsloops und somit für die katalysierte Reaktion von entscheidender Bedeutung zu sein. Außerdem wurde die erstaunliche Beobachtung gemacht, dass der adaptive Substratbindungsprozess mit einem Dimer-Tetramer Übergang gekoppelt ist, welcher die beobachtete positive Kooperativität der Ligandenbindung erklären kann. Alles in allem weist saFabI im Vergleich zu FabI Proteinen aus anderen Organismen mehrere außergewöhnliche Eigenschaften auf, die für die Synthese von verzweigten Fettsäuren nötig sein könnten, welche wiederum für die Überlebensfähigkeit von S. aureus im Wirt von Bedeutung sind. Diese Erkenntnis könnte erklären, warum S. aureus selbst bei Anwesenheit von exogenen Fettsäuren von FAS-II Inhibitoren abgetötet werden kann. Somit können die gewonnenen atomaren saFabI Modelle einen entscheidenden Beitrag zur Entwicklung neuer Hemmstoffe dieses validierten Angriffszieles leisten. Tatsächlich konnten die neuen Strukturen genutzt werden, um die Bindungsstärken sowie die Verweilzeiten verschiedener saFabI Inhibitoren molekular zu erklären. Die Struktur von saFabI im Komplex mit dem 2-Pyridon Inhibitor CG400549 hingegen enthüllte spezifische Wechselwirkungen in der geweiteten Bindetasche des S. aureus Enzyms, welche das geringe Aktivitätsspektrum dieses derzeit klinisch erprobten Inhibitors erklären. Diese Studien schaffen somit eine ideale Voraussetzung für die Entwicklung neuer wirksamer saFabI Inhibitoren, was am Beispiel des 4-Pyridons PT166 belegt werden kann. Im Rahmen der vorliegenden Dissertation konnten außerdem die Strukturen des Enzyms KasA im Komplex mit mehreren Derivaten des Naturstoffs Thiolactomycin gelöst werden. / Whereas most currently used antibiotics act by interfering with essential bacterial processes, a smaller group of antibacterials disturbs the integrity of the cell membrane. Since fatty acids are a vital component of membrane phospholipids, the type-II fatty acid biosynthesis pathway (FAS-II) of bacteria constitutes a promising drug target. The front-line anti-tuberculosis prodrug isoniazid blocks the FAS-II pathway in M. tuberculosis thereby leading to morphological changes and finally to cell lysis. When it became evident that the enoyl-ACP reductase in the FAS-II pathway is the target of the activated isoniazid, several programs were initiated to develop novel inhibitors directed against this protein in different pathogens. The S. aureus enoyl-ACP reductase (saFabI) is of particular interest since three promising drug candidates inhibiting this homologue have reached clinical trials. However, despite these prospects, no crystal structures of saFabI were publicly available at the time the present work was initiated. Thus, one major goal of this thesis was the generation of high-resolution atomic models by means of X-ray crystallography. The development of a highly reproducible approach to co-crystallize saFabI in complex with NADP+ and diphenyl ether-based inhibitors led to crystal structures of 17 different ternary complexes. Additional crystallographic experiments permitted the view into two apo-structures and two atomic models of saFabI in complex with NADPH and 2-pyridone inhibitors. Based on the established saFabI structure, molecular dynamics (MD) simulations were performed to improve our understanding of the conformational mobility of this protein. Taken together, these investigations of the saFabI structure and its flexibility served as an ideal platform to address important questions surrounding substrate and inhibitor recognition by this enzyme. Intriguingly, our saFabI structures provide several vastly different snapshots along the reaction coordinate of ligand binding and hydride transfer, including the closure of the flexible substrate binding loop (SBL). The extraordinary mobility of saFabI was confirmed by MD simulations suggesting that conformational motions indeed play a pivotal role during substrate delivery and turnover. A water chain linking the active site with a water-basin inside the homo-tetrameric enzyme was found likely to be crucial for the closure and opening of the SBL and, thus, for the catalyzed reaction. Notably, the induced-fit ligand binding process involves a dimer-tetramer transition, which could be related to the observed positive cooperativity of cofactor and substrate binding. Overall, saFabI displays several unique characteristics compared to FabI proteins from other organisms that might be necessary for the synthesis of branched-chain fatty acids, which in turn are required for S. aureus fitness in vivo. This finding may explain why S. aureus is sensitive to FAS-II inhibitors even in the presence of exogenous fatty acids. Accordingly, saFabI remains a valid drug target and our structures can be used as a molecular basis for rational drug design efforts. In fact, binding affinity trends of diphenyl ether inhibitors and, more importantly, the correlated residence times could be rationalized at the molecular level. Furthermore, the structure of saFabI in complex with the 2-pyridone inhibitor CG400549 revealed unique interactions in the wider binding crevice of saFabI compared to other FabI homologues explaining the narrow activity spectrum of this clinical candidate with proven human efficacy. In summary, these studies provide an ideal platform for the development of new, effective saFabI inhibitors as exemplified by the promising 4-pyridone PT166. In the context of this dissertation, crystal structures of the condensing enzyme KasA in complex with several analogs of the naturally occurring inhibitor thiolactomycin have been solved.
7

Structure Analysis Of FabI And FabZ Enzymes Of The Fatty Acid Biosynthesis Pathway Of Plasmodium Falciparum

Maity, Koustav 09 1900 (has links) (PDF)
The emergence of drug resistant strains of Plasmodium has given a new face to the old disease, malaria. One of the approaches is to block metabolic pathways of the pathogen. The current thesis describes the X-ray crystallographic analysis of two enzymes of the fatty acid biosynthesis pathway of the malaria parasite Plasmodium falciparum. In order to understand the functional mechanism and mode of inhibitor binding, enzyme-inhibitor complexes were characterized, which could help in further improvement of the efficacy of the inhibitors and hence to fight against the disease. The introductory chapter of the thesis presents a discussion on malaria and different metabolic pathways of the pathogen which could be suitable targets for novel antimalarials. In continuation to that, the pathway of our choice the fatty acid biosynthesis and an overview of the structural features of the enzymes involved in the pathway that have been characterized from different organisms are also described. The second chapter includes the tools of X-ray crystallography that were used for structural studies of the present work. It also discusses the biochemical, biophysical and other computational methods used to further characterize the enzymes under study. Triclosan, a well known inhibitor of Enoyl Acyl Carrier Protein Reductase (FabI) from several pathogenic organisms, is a promising lead compound to design effective drugs. The X-ray crystal structures of Plasmodium falciparum FabI (PfFabI), in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations, were determined and compared with triclosan binding which form the basis of chapter 3. The structures revealed that 4 and 2’ substituted compounds have more interactions with the protein, cofactor and solvent molecules as compared to triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2’ position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water based inhibitor design. 2’ and 4’ unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensates for the lost interactions due to the unsubstitution at 2’ and 4’. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2’ and 4’ positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. Certain residues in the substrate binding tunnel of PfFabI were mutated to identify the role of these residues in substrate binding and protein stability, which forms the 4th chapter of the thesis. The substrate binding site residue Ala372 of PfFabI has been mutated to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli FabI (EcFabI) which has a Methionine at the structurally similar position of Ala372 of PfFabI. Kinetic studies of the mutants of PfFabI and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a 3-fold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. A second set of mutants generated to check this hypothesis exhibited loss of function, except in one case where, the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. The main focus of chapter 5 is β-Hydroxyacyl-acyl carrier protein dehydratase of Plasmoduim falciparum (PfFabZ) which catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ was available in its hexameric (active) and dimeric (inactive) forms. However, until now PfFabZ has not been crystallized with any bound inhibitors. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of three of these complexes. This is the first report of the crystal structures of PfFabZ with competitive inhibitor complexes and the first such study on any FabZ enzyme with active site inhibitors. These inhibitors in the active site stabilize the substrate binding loop, revealing the substrate binding tunnel with an overall shape of “U”. In the crystal structure, the residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed, implying that it controls the length of the tunnel and makes it suitable for accommodating longer substrates merely by changing its side chain conformation. The hydrophobic nature of the substrate binding channel signifies the specificity for the hydrophobic tail of fatty acid substrates. The volume of the active site tunnel is determined by the sequence as well as by the conformation of the substrate binding site loop region and varies between organisms for accommodating fatty acids of different chain lengths. All PfFabZ inhibitors reported here bind to the active site through specific contacts like hydrogen bonds with catalytic residues and hydrophobic interactions. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme, that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms. The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites. We have analyzed the structural features and sequences of proteins having the hot dog fold. This study reveals that though the basic architecture of the fold is well conserved in these proteins, significant differences exist in their sequence, nature of substrate and oligomerization. Segments with certain conserved sequence motifs seem to play crucial structural and functional roles in various classes of these proteins. The analysis discussed in chapter 6, led to predictions regarding the functional classification and identification of possible catalytic residues of a number of hot dog fold-containing hypothetical proteins whose structures were determined in high throughput structural genomics projects. Rv0098, predicted to be the FabZ of Mycobacterium tuberculosis, was cloned, expressed, purified, crystallized, and X-ray diffraction data were collected. Molecular replacement trials with all “hot dog” fold proteins failed to yield any significant solution due to the low sequence similarity (<20%) of Rv0098 compared to other FabZs. During the trials of structure solution by multiple isomorphous replacement method, structure of Rv0098 was published and it was shown to be a long-chain fatty acyl-CoA thioesterase (FcoT). The crystal structure of Rv0098 did not explain the molecular basis of substrate specificity of varying chain lengths. Molecular dynamics studies were carried out, which revealed that certain residues of the substrate binding tunnel are flexible and thus modulates the length of the tunnel. Flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. The structural basis of accommodating long chain substrates by Rv0098 is discussed in chapter 7, by combining the crystallographic and molecular dynamics studies. Part of the work presented in the thesis has been reported in the following publications. Karmodiya, K., Sajad, S., Sinha, S., Maity, K., Suguna, K. and Surolia, N. (2007) Conformational stability and thermodynamic characterization of homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase. IUBMB Life 59, 441-9. Pidugu, L. S., Maity, K., Ramaswamy, K., Surolia, N. and Suguna, K. (2009) Analysis of proteins with the 'hot dog' fold: prediction of function and identification of catalytic residues of hypothetical proteins. BMC Struct Biol 9, 37. Kapoor, N., Banerjee, T., Babu, P., Maity, K., Surolia, N. and Surolia, A. (2009) Design, development, synthesis, and docking analysis of 2'-substituted triclosan analogs as inhibitors for Plasmodium falciparum enoyl-ACP reductase. IUBMB Life 61, 1083-91. Maity, K., Bhargav, S. P., Sankaran, B., Surolia, N., Surolia, A. and Suguna, K. (2010) X-ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibition. IUBMB Life 62, 467-76. Maity, K., Banerjee, T., Narayanappa, P., Surolia, N., Surolia, A. and Suguna, K. (2010) Effect of substrate binding loop mutations on the structure, kinetics and inhibition of Enoyl Acyl Carrier Protein Reductase from Plasmodium falciparum. (Communicated) Maity, K., Bharat, S. V., Kapoor, N., Surolia, N., Surolia, A. and Suguna, K. (2010) Insights into the functional and inhibitory mechanism of the β-Hydroxyacyl-Acyl Carrier Protein Dehydratase of Plasmodium falciparum from the crystal structures of its complexes with active site inhibitors. (Communicated)
8

Computational And Biochemical Studies On The Enzymes Of Type II Fatty Acid Biosynthesis Pathway : Towards Antimalarial And Antibacterial Drug Discovery

Kumar, Gyanendra 02 1900 (has links)
Malaria, caused by the parasite Plasmodium, continues to exact high global morbidity and mortality rate next only to tuberculosis. It causes 300-500 million clinical infections out of which more than a million people succumb to death annually. Worst affected are the children below 5 years of age in sub-Saharan Africa. Plasmodium is a protozoan parasite classified under the phylum Apicomplexa that also includes parasites such as Toxoplasma, Lankestrella, Eimeria and Cryptosporidium. Of the four species of Plasmodium affecting man viz., P. falciparum, P. vivax, P. ovale and P. malariae, Plasmodium falciparum is the deadliest as it causes cerebral malaria. The situation has worsened recently with the emergence of drug resistance in the parasite. Therefore, deciphering new pathways in the parasite for developing lead antimalarial compounds is the need of the hour. The discovery of the type II fatty acid biosynthesis pathway in Plasmodium falciparum has opened up new avenues for the design of new antimalarials as this pathway is different from the one in human hosts. Although many biochemical pathways such as the purine, pyrimidine and carbohydrate metabolic pathways, and the phospholipid, folate and heme biosynthetic pathways operate in the malaria parasite and are being investigated for their amenability as antimalarial therapeutic targets, no antimalarial of commercial use based on the direct intervention of these biochemical pathways has emerged so far. This is due to the fact that the structure and function of the targets of these drugs overlaps with that of the human host. A description of the parasite, its metabolic pathways, efforts to use these pathways for antimalarial drug discovery, inhibitors targeting these pathways, introduction to fatty acid biosynthesis pathway, discovery of type II fatty acid biosynthesis pathway in Plasmodium falciparum and prospects of developing lead compounds towards antimalarial drug discovery is given in Chapter 1 of the thesis. In the exploration of newly discovered type II fatty acid biosynthesis pathway of P. falciparum as a drug target for antimalarial drug discovery, one of the enzymes; β-hydroxyacyl- acyl carrier protein dehydratase (PfFabZ) was cloned and being characterized in the lab. The atomic structure of PfFabZ was not known till that point of time. Chapter 2 describes the homology modeled structure of PfFabZ and docking of the discovered inhibitors with this structure to provide a rationale for their inhibitory activity. Despite low sequence identity of ~ 21% with the closest available atomic structure then, E. coli FabA, a good model of PfFabZ could be built. A comparison of the modeled structure with recently determined crystal structure of PfFabZ is provided and design of new potential inhibitors is described. This study provides insights to further improve the inhibition of this enzyme. Enoyl acyl carrier protein reductase (ENR) is the most important enzyme in the type II fatty acid biosynthesis pathway. It has been proved as an important target for antibacterial as well as antimalarial drug discovery. The most effective drug against tuberculosis – Isoniazid targets this enzyme in M. tuberculosis. The well known antibacterial compound – Triclosan, a diphenyl ether, also targets this enzyme in P. falciparum. I designed a number of novel diphenyl ether compounds. Some of these compounds could be synthesized in the laboratory. Chapter 3 describes the design, docking studies and inhibitory activity of these novel diphenyl ether compounds against PfENR and E. coli ENR. Some of these compounds inhibit PfENR in nanomolar concentrations and EcENR in low micromolar concentrations, and many of them inhibit the growth of parasites in culture also. The structure activity relationship of these compounds is discussed that provides important insights into the activity of this class of compounds which is a step towards developing this class of compounds into an antimalarial and antibacterial candidate drugs. Components of the green tea extract and polyphenols are well known for their medicinal properties since ages. Recently they have been shown to inhibit components of the bacterial fatty acid biosynthesis pathway. Some selected tea catechins and polyphenols were tested in the laboratory for their inhibitory activity against PfENR. I conducted docking studies to find their probable binding sites in PfENR. On kinetic analysis of their inhibition, these compounds were found to be competitive with respect to the cofactor NADH. This has an implication that they could potentiate inhibition of PfENR by Triclosan in a fashion similar to that of NADH. As a model case, one of the tea catechins; EGCG ((-) Epigalocatechin gallate) was tested for this property. Indeed, in the presence of EGCG, the inhibition of PfENR improved from nanomolar to picomolar concentration of Triclosan.conducted molecular modeling studies and propose a model for the formation of a ternary complex consisting of EGCG, Triclosan and PfENR. Docking studies of these inhibitors and a model for the ternary complex is described in Chapter 4. Docking simulations show that these compounds indeed occupy NADH binding site. This study provides insights for further improvements in the usage of diphenyl ethers in conjugation or combination with tea catechins as possible antimalarial therapeutics. In search for new lead compounds against deadly diseases, in silico virtual screening and high throughput screening strategies are being adopted worldwide. While virtual screening needs a large amount of computation time and hardware, high throughput screening proves to be quite expensive. I adopted an intermediate approach, a combination of both these strategies and discovered compounds with a 2-thioxothiazolidin-4-one core moiety, commonly known as rhodanines as a novel class of inhibitors of PfENR with antimalarial properties. Chapter 5 describes the discovery of this class of compounds as inhibitors of PfENR. A small but diverse set of 382 compounds from a library of ~2,00,000 compounds was chosen for high throughput screening. The best compound gave an IC50 of 6.0 µM with many more in the higher micromolar range. The compound library was searched again for the compounds similar in structure with this best compound, virtual screening was conducted and 32 new compounds with better binding energies compared to the first lead and reasonable binding modes were tested. As a result, a new compound with an IC50 of 240 nM was discovered. Many more compounds gave IC50 values in 3-15 µM range. The best inhibitor was tested in red blood cell cultures of Plasmodium, it was found to inhibit the growth of the malaria parasite at an IC50 value of 0.75 µM. This study provides a new scaffold and lead compounds for further exploration towards antimalarial drug discovery. The summary of the results and conclusions of studies described in various chapters is given in Chapter 6. This chapter concludes the work described in the thesis. Cloning, over-expression and purification of PanD from M. tuberculosis, FabA and FabZ from E. coli are described in the Appendix.

Page generated in 0.0638 seconds