• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 46
  • 37
  • 35
  • 22
  • 19
  • 18
  • 17
  • 17
  • 16
  • 16
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Feature extraction and selection for background modeling and foreground detection / Extraction et sélection de caractéristiques pour la détection d’objets mobiles dans des vidéos

Pacheco Do Espirito Silva, Caroline 10 May 2017 (has links)
Dans ce manuscrit de thèse, nous présentons un descripteur robuste pour la soustraction d’arrière-plan qui est capable de décrire la texture à partir d’une séquence d’images. Ce descripteur est moins sensible aux bruits et produit un histogramme court, tout en préservant la robustesse aux changements d’éclairage. Un autre descripteur pour la reconnaissance dynamique des textures est également proposé. Le descripteur permet d’extraire non seulement des informations de couleur, mais aussi des informations plus détaillées provenant des séquences vidéo. Enfin, nous présentons une approche de sélection de caractéristiques basée sur le principe d'apprentissage par ensemble qui est capable de sélectionner les caractéristiques appropriées pour chaque pixel afin de distinguer les objets de premier plan de l’arrière plan. En outre, notre proposition utilise un mécanisme pour mettre à jour l’importance relative de chaque caractéristique au cours du temps. De plus, une approche heuristique est utilisée pour réduire la complexité de la maintenance du modèle d’arrière-plan et aussi sa robustesse. Par contre, cette méthode nécessite un grand nombre de caractéristiques pour avoir une bonne précision. De plus, chaque classificateur de base apprend un ensemble de caractéristiques au lieu de chaque caractéristique individuellement. Pour compenser ces limitations, nous avons amélioré cette approche en proposant une nouvelle méthodologie pour sélectionner des caractéristiques basées sur le principe du « wagging ». Nous avons également adopté une approche basée sur le concept de « superpixel » au lieu de traiter chaque pixel individuellement. Cela augmente non seulement l’efficacité en termes de temps de calcul et de consommation de mémoire, mais aussi la qualité de la détection des objets mobiles. / In this thesis, we present a robust descriptor for background subtraction which is able to describe texture from an image sequence. The descriptor is less sensitive to noisy pixels and produces a short histogram, while preserving robustness to illumination changes. Moreover, a descriptor for dynamic texture recognition is also proposed. This descriptor extracts not only color information, but also a more detailed information from video sequences. Finally, we present an ensemble for feature selection approach that is able to select suitable features for each pixel to distinguish the foreground objects from the background ones. Our proposal uses a mechanism to update the relative importance of each feature over time. For this purpose, a heuristic approach is used to reduce the complexity of the background model maintenance while maintaining the robustness of the background model. However, this method only reaches the highest accuracy when the number of features is huge. In addition, each base classifier learns a feature set instead of individual features. To overcome these limitations, we extended our previous approach by proposing a new methodology for selecting features based on wagging. We also adopted a superpixel-based approach instead of a pixel-level approach. This does not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance of moving objects.
62

Strojové učení v úloze predikce vlivu nukleotidového polymorfismu / Prediction of the Effect of Nucleotide Substitution Using Machine Learning

Šalanda, Ondřej January 2015 (has links)
This thesis brings a new approach to the prediction of the effect of nucleotide polymorphism on human genome. The main goal is to create a new meta-classifier, which combines predictions of several already implemented software classifiers. The novelty of developed tool lies in using machine learning methods to find consensus over those tools, that would enhance accuracy and versatility of prediction. Final experiments show, that compared to the best integrated tool, the meta-classifier increases the area under ROC curve by 3,4 in average and normalized accuracy is improved by up to 7\,\%. The new classifying service is available at http://ll06.sci.muni.cz:6232/snpeffect/.
63

Using Ensemble Machine Learning Methods in Estimating Software Development Effort

Kanneganti, Alekhya January 2020 (has links)
Background: Software Development Effort Estimation is a process that focuses on estimating the required effort to develop a software project with a minimal budget. Estimating effort includes interpretation of required manpower, resources, time and schedule. Project managers are responsible for estimating the required effort. A model that can predict software development effort efficiently comes in hand and acts as a decision support system for the project managers to enhance the precision in estimating effort. Therefore, the context of this study is to increase the efficiency in estimating software development effort. Objective: The main objective of this thesis is to identify an effective ensemble method to build and implement it, in estimating software development effort. Apart from this, parameter tuning is also implemented to improve the performance of the model. Finally, we compare the results of the developed model with the existing models. Method: In this thesis, we have adopted two research methods. Initially, a Literature Review was conducted to gain knowledge on the existing studies, machine learning techniques, datasets, ensemble methods that were previously used in estimating Software Development Effort. Then a controlled Experiment was conducted in order to build an ensemble model and to evaluate the performance of the ensemble model for determining if the developed model has a better performance when compared to the existing models.   Results: After conducting literature review and collecting evidence, we have decided to build and implement stacked generalization ensemble method in this thesis, with the help of individual machine learning techniques like Support vector regressor (SVR), K-Nearest Neighbors regressor (KNN), Decision Tree Regressor (DTR), Linear Regressor (LR), Multi-Layer Perceptron Regressor (MLP) Random Forest Regressor (RFR), Gradient Boosting Regressor (GBR), AdaBoost Regressor (ABR), XGBoost Regressor (XGB). Likewise, we have decided to implement Randomized Parameter Optimization and SelectKbest function to implement feature section. Datasets like COCOMO81, MAXWELL, ALBERCHT, DESHARNAIS were used. Results of the experiment show that the developed ensemble model performs at its best, for three out of four datasets. Conclusion: After evaluating and analyzing the results obtained, we can conclude that the developed model works well with the datasets that have continuous, numeric type of values. We can also conclude that the developed ensemble model outperforms other existing models when implemented with COCOMO81, MAXWELL, ALBERCHT datasets.
64

Utilizing Diversity and Performance Measures for Ensemble Creation

Löfström, Tuve January 2009 (has links)
An ensemble is a composite model, aggregating multiple base models into one predictive model. An ensemble prediction, consequently, is a function of all included base models. Both theory and a wealth of empirical studies have established that ensembles are generally more accurate than single predictive models. The main motivation for using ensembles is the fact that combining several models will eliminate uncorrelated base classifier errors. This reasoning, however, requires the base classifiers to commit their errors on different instances – clearly there is no point in combining identical models. Informally, the key term diversity means that the base classifiers commit their errors independently of each other. The problem addressed in this thesis is how to maximize ensemble performance by analyzing how diversity can be utilized when creating ensembles. A series of studies, addressing different facets of the question, is presented. The results show that ensemble accuracy and the diversity measure difficulty are the two individually best measures to use as optimization criterion when selecting ensemble members. However, the results further suggest that combinations of several measures are most often better as optimization criteria than single measures. A novel method to find a useful combination of measures is proposed in the end. Furthermore, the results show that it is very difficult to estimate predictive performance on unseen data based on results achieved with available data. Finally, it is also shown that implicit diversity achieved by varied ANN architecture or by using resampling of features is beneficial for ensemble performance. / <p><strong>Sponsorship</strong>:</p><p>This work was supported by the Information Fusion Research Program (www.infofusion.se) at the University of Skövde, Sweden, in partnership with the Swedish Knowledge Foundation under grant 2003/0104.</p>
65

Data-Driven Traffic Forecasting for Completed Vehicle Simulation: : A Case Study with Volvo Test Trucks

Shahrokhi, Samaneh January 2023 (has links)
This thesis offers a thorough investigation into the application of machine learning algorithms for predicting the presence of vehicles in a traffic setting. The research primarily focuses on enhancing vehicle simulation by employing data-driven traffic prediction methods. The study approaches the problem as a binary classification task. Various supervised learning algorithms, including Random Forest (RF), Gradient Boosting (GB), Support Vector Machine (SVM), and Logistic Regression (LogReg) were evaluated and tested. The thesis encompasses six distinct implementations, each involving different combinations of algorithms, feature engineering, hyperparameter tuning, and data splitting. The performance of each model was assessed using metrics such as accuracy, precision, recall, and F1-score, and visualizations like ROC-AUC curves were used to gain insights into their discrimination capabilities. While the RF model achieved the highest accuracy at 97%, the AUC score of Combination 2 (RF+GB) suggests that this ensemble model could strike a better balance between high accuracy (86%) and effective class separation (99%). Ultimately, the study identifies an ensemble model as the preferred choice, leading to significant improvements in prediction accuracy. The research also explores working on the problem as a time-series prediction task, exploring the use of Long Short-Term Memory (LSTM) and Auto-Regressive Integrated Moving Average (Auto-ARIMA) models. However, we found that this approach was impractical due to the dataset’s discrete and non-sequential nature. This research contributes to the advancement of vehicle simulation and traffic forecasting, demonstrating the potential of machine learning in addressing complex real-world scenarios.
66

Study of augmentations on historical manuscripts using TrOCR

Meoded, Erez 08 December 2023 (has links) (PDF)
Historical manuscripts are an essential source of original content. For many reasons, it is hard to recognize these manuscripts as text. This thesis used a state-of-the-art Handwritten Text Recognizer, TrOCR, to recognize a 16th-century manuscript. TrOCR uses a vision transformer to encode the input images and a language transformer to decode them back to text. We showed that carefully preprocessed images and designed augmentations can improve the performance of TrOCR. We suggest an ensemble of augmented models to achieve an even better performance.
67

Spatial Ensemble Distillation Learning Based Real-Time Crash Prediction and Management Framework

Islam, Md Rakibul 01 January 2023 (has links) (PDF)
Real-time crash prediction is a complex task, since there is no existing framework to predict crash likelihood, types, and severity together along with a real-time traffic management strategy. Developing such a framework presents various challenges, including not independent and identically distributed data, imbalanced data, large model size, high computational cost, missing data, sensitivity vs. false alarm rate (FAR) trade-offs, estimation of traffic restoration time after crash occurrence, and real-world deployment strategy. A novel spatial ensemble distillation learning modeling technique is proposed to address these challenges. First, large-scale real-time data were used to develop a crash likelihood prediction model. Second, the proposed crash likelihood model's viability in predicting specific crash types was tested for real-world applications. Third, the framework was extended to predict crash severity in real-time, categorizing crashes into four levels. The results demonstrated strong performance with sensitivities of 90.35%, 94.80%, and 84.23% for all crashes, rear-end crashes, and sideswipe/angle crashes, and 83.32%, 81.25%, 83.08%, and 84.59% for fatal, severe, minor injury, and PDO crashes, respectively, all while remaining very low FARs. This methodology can also reduce model size, lower computation costs, improve sensitivity, and decrease FAR. These results will be used by traffic management center for taking measures to prevent crashes in real-time through active traffic management strategies. The framework was further extended for efficient traffic management after any crash occurrence despite adopting these strategies. Particularly, the framework was extended to predict the traffic state after a crash, predict the traffic restoration time based on the estimated post-crash traffic state, and apply a three-step validation technique to evaluate the performance of the developed approach. Finally, real-world deployment strategies of the proposed methodologies for real-time crash prediction along with their types and severities and real-time post-crash management are discussed. Overall, the methodologies presented in this dissertation offer multifaceted novel contributions and have excellent potential to reduce fatalities and injuries.
68

Transformer-based Source Code Description Generation : An ensemble learning-based approach / Transformatorbaserad Generering av Källkodsbeskrivning : En ensemblemodell tillvägagångssätt

Antonios, Mantzaris January 2022 (has links)
Code comprehension can be significantly benefited from high-level source code summaries. For the majority of the developers, understanding another developer’s code or code that was written in the past by them, is a timeconsuming and frustrating task. This is necessary though in software maintenance or in cases where several people are working on the same project. A fast, reliable and informative source code description generator can automate this procedure, which is often avoided by developers. The rise of Transformers has turned the attention to them leading to the development of various Transformer-based models that tackle the task of source code summarization from different perspectives. Most of these models though are treating each other in a competitive manner when their complementarity could be proven beneficial. To this end, an ensemble learning-based approach is followed to explore the feasibility and effectiveness of the collaboration of more than one powerful Transformer-based models. The used base models are PLBart and GraphCodeBERT, two models with different focuses, and the ensemble technique is stacking. The results show that such a model can improve the performance and informativeness of individual models. However, it requires changes in the configuration of the respective models, that might harm them, and also further fine-tuning at the aggregation phase to find the most suitable base models’ weights and next-token probabilities combination, for the at the time ensemble. The results also revealed the need for human evaluation since metrics like BiLingual Evaluation Understudy (BLEU) are not always representative of the quality of the produced summary. Even if the outcome is promising, further work should follow, driven by this approach and based on the limitations that are not resolved in this work, for the development of a potential State Of The Art (SOTA) model. / Mjukvaruunderhåll samt kodförståelse är två områden som märkbart kan gynnas av källkodssammanfattning på hög nivå. För majoriteten av dagens utvecklare är det en tidskrävande och frustrerande uppgift att förstå en annan utvecklares kod.. För majoriteten av utvecklarna är det en tidskrävande och frustrerande uppgift att förstå en annan utvecklares kod eller kod som skrivits tidigare an dem. Detta är nödvändigt vid underhåll av programvara eller när flera personer arbetar med samma projekt. En snabb, pålitlig och informativ källkodsbeskrivningsgenerator kan automatisera denna procedur, som ofta undviks av utvecklare. Framväxten av Transformers har riktat uppmärksamheten mot dem, vilket har lett till utvecklingen av olika Transformer-baserade modeller som tar sig an uppgiften att sammanfatta källkod ur olika perspektiv. De flesta av dessa modeller behandlar dock varandra på ett konkurrenskraftigt sätt när deras komplementaritet kan bevisas vara mer fördelaktigt. För detta ändamål följs en ensembleinlärningsbaserad strategi för att utforska genomförbarheten och effektiviteten av samarbetet mellan mer än en kraftfull transformatorbaserad modell. De använda basmodellerna är PLBart och GraphCodeBERT, två modeller med olika fokus, och ensemblingstekniken staplas. Resultaten visar att en sådan modell kan förbättra prestanda och informativitet hos enskilda modeller. Det kräver dock förändringar i konfigurationen av respektive modeller som kan leda till skada, och även ytterligare finjusteringar i aggregeringsfasen för att hitta de mest lämpliga basmodellernas vikter och nästa symboliska sannolikhetskombination för den dåvarande ensemblen. Resultaten visade också behovet av mänsklig utvärdering eftersom mätvärden som BLEU inte alltid är representativa för kvaliteten på den producerade sammanfattningen. Även om resultaten är lovande bör ytterligare arbete följa, drivet av detta tillvägagångssätt och baserat på de begränsningar som inte är lösta i detta arbete, för utvecklingen av en potentiell SOTA-modell.
69

Automatic Change Detection in Visual Scenes

Brolin, Morgan January 2021 (has links)
This thesis proposes a Visual Scene Change Detector(VSCD) system which is a system which involves four parts, image retrieval, image registration, image change detection and panorama creation. Two prestudies are conducted in order to find a proposed image registration method and a image retrieval method. The two found methods are then combined with a proposed image registration method and a proposed panorama creation method to form the proposed VSCD. The image retrieval prestudy evaluates a SIFT related method with a bag of words related method and finds the SIFT related method to be the superior method. The image change detection prestudy evaluates 8 different image change detection methods. Result from the image change detection prestudy shows that the methods performance is dependent on the image category and an ensemble method is the least dependent on the category of images. An ensemble method is found to be the best performing method followed by a range filter method and then a Convolutional Neural Network (CNN) method. Using a combination of the 2 image retrieval methods and the 8 image change detection method 16 different VSCD are formed and tested. The final result show that the VSCD comprised of the best methods from the prestudies is the best performing method. / Detta exjobb föreslår ett Visual Scene Change Detector(VSCD) system vilket är ett system som har 4 delar, image retrieval, image registration, image change detection och panorama creation. Två förstudier görs för att hitta en föreslagen image registration metod och en föreslagen panorama creation metod. De två föreslagna delarna kombineras med en föreslagen image registration och en föreslagen panorama creation metod för att utgöra det föreslagna VSCD systemet. Image retrieval förstudien evaluerar en ScaleInvariant Feature Transform (SIFT) relaterad method med en Bag of Words (BoW) relaterad metod och hittar att den SIFT relaterade methoden är bäst. Image change detection förstudie visar att metodernas prestanda är beroende av catagorin av bilder och att en enemble metod är minst beroende av categorin av bilder. Enemble metoden är hittad att vara den bästa presterande metoden följt av en range filter metod och sedan av en CNN metod. Genom att använda de 2 image retrieval metoder kombinerat med de 8 image change detection metoder är 16 st VSCD system skapade och testade. Sista resultatet visar att den VSCD som använder de bästa metoderna från förstudien är den bäst presterande VSCD.
70

Cooperative coevolutionary mixture of experts : a neuro ensemble approach for automatic decomposition of classification problems

Nguyen, Minh Ha, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2006 (has links)
Artificial neural networks have been widely used for machine learning and optimization. A neuro ensemble is a collection of neural networks that works cooperatively on a problem. In the literature, it has been shown that by combining several neural networks, the generalization of the overall system could be enhanced over the separate generalization ability of the individuals. Evolutionary computation can be used to search for a suitable architecture and weights for neural networks. When evolutionary computation is used to evolve a neuro ensemble, it is usually known as evolutionary neuro ensemble. In most real-world problems, we either know little about these problems or the problems are too complex to have a clear vision on how to decompose them by hand. Thus, it is usually desirable to have a method to automatically decompose a complex problem into a set of overlapping or non-overlapping sub-problems and assign one or more specialists (i.e. experts, learning machines) to each of these sub-problems. An important feature of neuro ensemble is automatic problem decomposition. Some neuro ensemble methods are able to generate networks, where each individual network is specialized on a unique sub-task such as mapping a subspace of the feature space. In real world problems, this is usually an important feature for a number of reasons including: (1) it provides an understanding of the decomposition nature of a problem; (2) if a problem changes, one can replace the network associated with the sub-space where the change occurs without affecting the overall ensemble; (3) if one network fails, the rest of the ensemble can still function in their sub-spaces; (4) if one learn the structure of one problem, it can potentially be transferred to other similar problems. In this thesis, I focus on classification problems and present a systematic study of a novel evolutionary neuro ensemble approach which I call cooperative coevolutionary mixture of experts (CCME). Cooperative coevolution (CC) is a branch of evolutionary computation where individuals in different populations cooperate to solve a problem and their fitness function is calculated based on their reciprocal interaction. The mixture of expert model (ME) is a neuro ensemble approach which can generate networks that are specialized on different sub-spaces in the feature space. By combining CC and ME, I have a powerful framework whereby it is able to automatically form the experts and train each of them. I show that the CCME method produces competitive results in terms of generalization ability without increasing the computational cost when compared to traditional training approaches. I also propose two different mechanisms for visualizing the resultant decomposition in high-dimensional feature spaces. The first mechanism is a simple one where data are grouped based on the specialization of each expert and a color-map of the data records is visualized. The second mechanism relies on principal component analysis to project the feature space onto lower dimensions, whereby decision boundaries generated by each expert are visualized through convex approximations. I also investigate the regularization effect of learning by forgetting on the proposed CCME. I show that learning by forgetting helps CCME to generate neuro ensembles of low structural complexity while maintaining their generalization abilities. Overall, the thesis presents an evolutionary neuro ensemble method whereby (1) the generated ensemble generalizes well; (2) it is able to automatically decompose the classification problem; and (3) it generates networks with small architectures.

Page generated in 0.0856 seconds