• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seleção dinâmica de comitês de classificadores baseada em diversidade e acurácia para detecção de mudança de conceitos

Albuquerque, Regis Antonio Saraiva, 68999536833 08 June 2018 (has links)
Submitted by Regis Albuquerque (regis.albuquerque1@gmail.com) on 2018-06-20T21:40:28Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_regis_corrigida_final.pdf: 2557634 bytes, checksum: b48eb7c37fd9dd633c4489a7f0f041a4 (MD5) / Approved for entry into archive by Secretaria PPGI (secretariappgi@icomp.ufam.edu.br) on 2018-06-20T21:52:37Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_regis_corrigida_final.pdf: 2557634 bytes, checksum: b48eb7c37fd9dd633c4489a7f0f041a4 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-06-21T13:29:00Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_regis_corrigida_final.pdf: 2557634 bytes, checksum: b48eb7c37fd9dd633c4489a7f0f041a4 (MD5) / Made available in DSpace on 2018-06-21T13:29:01Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_regis_corrigida_final.pdf: 2557634 bytes, checksum: b48eb7c37fd9dd633c4489a7f0f041a4 (MD5) Previous issue date: 2018-06-08 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / Many machine learning applications have to deal with classification problems in dynamic environments. This type of environment may be affected by concept drift, which may reduce the accuracy of classification systems significantly. In this context, methods using ensemble of classifiers are interesting due to the fact that ensembles of classifiers allow the design of strategies for drift detection and reaction more accurate and robust to changes. A classification system based on ensemble of classifiers may be divided into three main phases: classifier generation; single classifier or subset of classifier selection; and classifier fusion. The selection phase may be performed as a dynamic process. In this case, for each unknown sample, the individual classifier or classifier ensemble most likely to be correct is chosen to assign a label to the sample. In this work, it is proposed a method for concept drift detection and reaction based on dynamic classifier ensemble selection. The proposed method choses the expert classifier ensemble according to diversity and accuracy values. Focusing on evaluating the impact of dynamic ensemble selection guided by diversity and accuracy in terms of concept drift detection and reaction, four series of experiments were carried in this work using both synthetic and real datasets. In addition, since the proposed method is broken down into four phases: pool of ensemble classifiers generation; dynamic ensemble selection; drift detection; and drift reaction, different versions of the proposed method were investigated by varying the parameters of each phase. The results show that, in general, all these different versions attain very similar accuracy values. Besides, when compared to two baselines: (1) DDM - single classifier-based; and (2) Leveraging Bagging - classifier ensemble-based, our method outperforms both baselines since it achieved higher accuracy, lower detection delay and false detection rates, and it did not present missing detection. However, both baselines present lower time complexity. Therefore, this work shows that dynamic classifier ensemble selection guided by diversity and accuracy helps to improve detection precision and the general accuracy of classification systems employed in problems with concept drift. / Muitas aplicações de aprendizado de máquina estão relacionadas com problemas de classificação em ambientes dinâmicos. Mudança de conceito figura nesse tipo de ambiente e pode prejudicar muito a acurácia de sistemas de classificação. Nesse contexto, a utilização de comitês de classificadores é interessante porque possibilita a implementação de processos de detecção e de reação à mudança mais acurados e robustos. Sistemas de classificação que utilizam comitês podem possuir três grandes fases: geração; seleção; e integração de classificadores. A etapa de seleção pode ser feita de forma dinâmica, isto é, para cada instância desconhecida, o classificador ou comitê de classificadores com maior probabilidade de acerto é escolhido para atribuir uma classe à essa instância. Neste trabalho, é proposto um método para detecção e reação à mudança de conceito que utiliza seleção dinâmica de comitês de classificadores. O método proposto escolhe o comitê especialista com base nos valores de diversidade e de acurácia de cada comitê candidato. A fim de avaliar o impacto do uso de seleção dinâmica guiada por diversidade e acurácia nas tarefas de detecção e reação a mudança de conceito, foram realizadas quatro séries de experimentos com bases sintéticas e reais. Além disso, como o método proposto é dividido em quatro fases: geração da população de comitês; seleção dinâmica do comitê especialista; detecção de mudanças; e reação à mudança, diferentes versões desse método foram investigadas em função da definição de parâmetros de cada fase. Os resultados dos experimentos mostraram que, de maneira geral, as versões estudadas são bem equivalentes em termos de acurácia média final. Adicionalmente, quando comparado a dois baselines: (1) DDM - que utiliza um único classificador; e (2) Leveraging Bagging - que utiliza um comitê de classificadores, o método proposto alcançou melhores taxas de acurácia, menores taxas de atraso de detecção, não deixou de detectar as mudanças conhecidas nas bases e produziu reduzidas taxas de falsa detecção, apesar de apresentar maior complexidade computacional. Portanto, o trabalho mostra que o uso de seleção dinâmica guiada por diversidade e acurácia melhora a precisão de detecção, bem como a acurácia geral de sistemas de classificação utilizados em problemas que apresentam mudança de conceitos.
2

ComitÃs de Classificadores Baseados nas Redes SOM e Fuzzy ART com Sintonia de ParÃmetros e SeleÃÃo de Atributos via MetaheurÃsticas EvolucionÃrias / Ensembles of classifiers based on SOM and Fuzzy ART networks with parameter tuning and feature selection through evolutionary metaheuristics.

CÃsar Lincoln Cavalcante Mattos 28 November 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O paradigma de classificaÃÃo baseada em comitÃs tem recebido considerÃvel atenÃÃo na literatura cientÃfica em anos recentes. Neste contexto, redes neurais supervisionadas tÃm sido a escolha mais comum para compor os classificadores base dos comitÃs. Esta dissertaÃÃo tem a intenÃÃo de projetar e avaliar comitÃs de classificadores obtidos atravÃs de modificaÃÃes impostas a algoritmos de aprendizado nÃo-supervisionado, tais como as redes Fuzzy ART e SOM, dando origem, respectivamente, Ãs arquiteturas ARTIE (ART in Ensembles) e MUSCLE (Multiple SOM Classifiers in Ensembles). A sintonia dos parÃmetros e a seleÃÃo dos atributos das redes neurais que compÃem as arquiteturas ARTIE e MUSCLE foram tratados por otimizaÃÃo metaheurÃstica, a partir da proposiÃÃo do algoritmo I-HPSO (Improved Hybrid Particles Swarm Optimization). As arquiteturas ARTIE e MUSCLE foram avaliadas e comparadas com comitÃs baseados nas redes Fuzzy ARTMAP, LVQ e ELM em 12 conjuntos de dados reais. Os resultados obtidos indicam que as arquiteturas propostas apresentam desempenhos superiores aos dos comitÃs baseados em redes neurais supervisionadas.
3

Previsão de falta de materiais no contexto de gestão inteligente de inventário: uma aplicação de aprendizado desbalanceado

Santis, Rodrigo Barbosa de 26 March 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-06-19T13:13:53Z No. of bitstreams: 1 rodrigobarbosadesantis.pdf: 2597054 bytes, checksum: b19542ca0e9312572d8ffa5896d735db (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-06-27T11:12:01Z (GMT) No. of bitstreams: 1 rodrigobarbosadesantis.pdf: 2597054 bytes, checksum: b19542ca0e9312572d8ffa5896d735db (MD5) / Made available in DSpace on 2018-06-27T11:12:01Z (GMT). No. of bitstreams: 1 rodrigobarbosadesantis.pdf: 2597054 bytes, checksum: b19542ca0e9312572d8ffa5896d735db (MD5) Previous issue date: 2018-03-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Falta de materiais é um problema comum na cadeia de suprimentos, impactando o nível de serviço e eficiência de um sistema de inventário. A identificação de materiais com grande riscos de falta antes da ocorrência do evento pode apresentar uma enorme oportunidade de melhoria no desempenho geral de uma empresa. No entanto, a complexidade deste tipo de problema é alta, devido ao desbalanceamento das classes de itens faltantes e não faltantes no inventário, que podem chegar a razões de 1 para 100. No presente trabalho, algoritmos de classificação são investigados para proposição de um modelo preditivo para preencher esta lacuna na literatura. Algumas métricas específicas como a área abaixo das curvas de Característica Operacionais do Receptor e de Precisão-Abrangência, bem como técnicas de amostragem e comitês de aprendizado são aplicados nesta tarefa. O modelo proposto foi testado em dois estudos de caso reais, nos quais verificou-se que adoção da ferramenta pode contribuir com o aumento do nível de serviço em uma cadeia de suprimentos. / Material backorder (or stockout) is a common supply chain problem, impacting the inventory system service level and effectiveness. Identifying materials with the highest chances of shortage prior its occurrence can present a high opportunity to improve the overall company’s performance. However, the complexity of this sort of problem is high, due to class imbalance between missing items and not missing ones in inventory, which can achieve proportions of 1 to 100. In this work, machine learning classifiers are investigated in order to fulfill this gap in literature. Specific metrics such as area under the Receiver Operator Characteristic and precision-recall curves, sampling techniques and ensemble learning are employed to this particular task. The proposed model was tested in two real case-studies, in which it was verified that the use of the tool may contribute with the improvemnet of the service level in the supply chain.

Page generated in 0.0921 seconds