• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An ontology for enhancing automation and interoperability in Enterprise Crowdsourcing Environments

Hetmank, Lars 17 November 2014 (has links) (PDF)
Enterprise crowdsourcing transforms the way in which traditional business tasks can be processed by harnessing the collective intelligence and workforce of a large and often diver-sified group of people. At the present time, data and information residing within enterprise crowdsourcing systems and other business applications are insufficiently interlinked and are rarely made publicly available in an open and semantically structured manner – neither to the corporate intranet nor to the World Wide Web (WWW). However, the semantic annotation of enterprise crowdsourcing activities is a promising research and application domain. The Semantic Web and its related technologies, methods and principles for publishing structured data offer an extension of the traditional layout-oriented Web to provide more intelligent and complex services. This technical report describes the efforts toward a universal and lightweight yet powerful Semantic Web vocabulary for the domain of enterprise crowdsourcing. As a methodology for developing the vocabulary, the approach of ontology engineering is applied. To illustrate the purpose and to limit the scope of the ontology, several informal competency questions as well as functional and non-functional requirements are presented. The subsequent con-ceptualization of the ontology applies different sources of knowledge and considers various perspectives. A set of semantic entities is derived from a review of existing crowdsourcing applications and a review of recent crowdsourcing literature. During the domain capture, all partial results of the review are integrated into a consistent data dictionary and structured as a UML data schema. The designed ontology includes 24 classes, 22 object properties and 30 datatype properties to describe the key aspects of a crowdsourcing model (CSM). To demonstrate the technical feasibility, the ontology is implemented using the Web Ontology Language (OWL). Finally, the ontology is evaluated by means of transforming informal to formal competency questions, comparing it to existing semantic vocabularies, and calculat-ing ontology metrics. Evidence is shown that the CSM ontology covers the key representa-tional needs of the enterprise crowdsourcing domain. At the end of the technical report, cur-rent limitations are illustrated and directions for future research are proposed.
2

Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments

Hetmank, Lars 05 October 2016 (has links) (PDF)
The last couple of years have seen a fascinating evolution. While the early Web predominantly focused on human consumption of Web content, the widespread dissemination of social software and Web 2.0 technologies enabled new forms of collaborative content creation and problem solving. These new forms often utilize the principles of collective intelligence, a phenomenon that emerges from a group of people who either cooperate or compete with each other to create a result that is better or more intelligent than any individual result (Leimeister, 2010; Malone, Laubacher, & Dellarocas, 2010). Crowdsourcing has recently gained attention as one of the mechanisms that taps into the power of web-enabled collective intelligence (Howe, 2008). Brabham (2013) defines it as “an online, distributed problem-solving and production model that leverages the collective intelligence of online communities to serve specific organizational goals” (p. xix). Well-known examples of crowdsourcing platforms are Wikipedia, Amazon Mechanical Turk, or InnoCentive. Since the emergence of the term crowdsourcing in 2006, one popular misconception is that crowdsourcing relies largely on an amateur crowd rather than a pool of professional skilled workers (Brabham, 2013). As this might be true for low cognitive tasks, such as tagging a picture or rating a product, it is often not true for complex problem-solving and creative tasks, such as developing a new computer algorithm or creating an impressive product design. This raises the question of how to efficiently allocate an enterprise crowdsourcing task to appropriate members of the crowd. The sheer number of crowdsourcing tasks available at crowdsourcing intermediaries makes it especially challenging for workers to identify a task that matches their skills, experiences, and knowledge (Schall, 2012, p. 2). An explanation why the identification of appropriate expert knowledge plays a major role in crowdsourcing is partly given in Condorcet’s jury theorem (Sunstein, 2008, p. 25). The theorem states that if the average participant in a binary decision process is more likely to be correct than incorrect, then as the number of participants increases, the higher the probability is that the aggregate arrives at the right answer. When assuming that a suitable participant for a task is more likely to give a correct answer or solution than an improper one, efficient task recommendation becomes crucial to improve the aggregated results in crowdsourcing processes. Although some assumptions of the theorem, such as independent votes, binary decisions, and homogenous groups, are often unrealistic in practice, it illustrates the importance of an optimized task allocation and group formation that consider the task requirements and workers’ characteristics. Ontologies are widely applied to support semantic search and recommendation mechanisms (Middleton, De Roure, & Shadbolt, 2009). However, little research has investigated the potentials and the design of an ontology for the domain of enterprise crowdsourcing. The author of this thesis argues in favor of enhancing the automation and interoperability of an enterprise crowdsourcing environment with the introduction of a semantic vocabulary in form of an expressive but easy-to-use ontology. The deployment of a semantic vocabulary for enterprise crowdsourcing is likely to provide several technical and economic benefits for an enterprise. These benefits were the main drivers in efforts made during the research project of this thesis: 1. Task allocation: With the utilization of the semantics, requesters are able to form smaller task-specific crowds that perform tasks at lower costs and in less time than larger crowds. A standardized and controlled vocabulary allows requesters to communicate specific details about a crowdsourcing activity within a web page along with other existing displayed information. This has advantages for both contributors and requesters. On the one hand, contributors can easily and precisely search for tasks that correspond to their interests, experiences, skills, knowledge, and availability. On the other hand, crowdsourcing systems and intermediaries can proactively recommend crowdsourcing tasks to potential contributors (e.g., based on their social network profiles). 2. Quality control: Capturing and storing crowdsourcing data increases the overall transparency of the entire crowdsourcing activity and thus allows for a more sophisticated quality control. Requesters are able to check the consistency and receive appropriate support to verify and validate crowdsourcing data according to defined data types and value ranges. Before involving potential workers in a crowdsourcing task, requesters can also judge their trustworthiness based on previous accomplished tasks and hence improve the recruitment process. 3. Task definition: A standardized set of semantic entities supports the configuration of a crowdsourcing task. Requesters can evaluate historical crowdsourcing data to get suggestions for equal or similar crowdsourcing tasks, for example, which incentive or evaluation mechanism to use. They may also decrease their time to configure a crowdsourcing task by reusing well-established task specifications of a particular type. 4. Data integration and exchange: Applying a semantic vocabulary as a standard format for describing enterprise crowdsourcing activities allows not only crowdsourcing systems inside but also crowdsourcing intermediaries outside the company to extract crowdsourcing data from other business applications, such as project management, enterprise resource planning, or social software, and use it for further processing without retyping and copying the data. Additionally, enterprise or web search engines may exploit the structured data and provide enhanced search, browsing, and navigation capabilities, for example, clustering similar crowdsourcing tasks according to the required qualifications or the offered incentives.
3

An ontology for enhancing automation and interoperability in Enterprise Crowdsourcing Environments

Hetmank, Lars January 2014 (has links)
Enterprise crowdsourcing transforms the way in which traditional business tasks can be processed by harnessing the collective intelligence and workforce of a large and often diver-sified group of people. At the present time, data and information residing within enterprise crowdsourcing systems and other business applications are insufficiently interlinked and are rarely made publicly available in an open and semantically structured manner – neither to the corporate intranet nor to the World Wide Web (WWW). However, the semantic annotation of enterprise crowdsourcing activities is a promising research and application domain. The Semantic Web and its related technologies, methods and principles for publishing structured data offer an extension of the traditional layout-oriented Web to provide more intelligent and complex services. This technical report describes the efforts toward a universal and lightweight yet powerful Semantic Web vocabulary for the domain of enterprise crowdsourcing. As a methodology for developing the vocabulary, the approach of ontology engineering is applied. To illustrate the purpose and to limit the scope of the ontology, several informal competency questions as well as functional and non-functional requirements are presented. The subsequent con-ceptualization of the ontology applies different sources of knowledge and considers various perspectives. A set of semantic entities is derived from a review of existing crowdsourcing applications and a review of recent crowdsourcing literature. During the domain capture, all partial results of the review are integrated into a consistent data dictionary and structured as a UML data schema. The designed ontology includes 24 classes, 22 object properties and 30 datatype properties to describe the key aspects of a crowdsourcing model (CSM). To demonstrate the technical feasibility, the ontology is implemented using the Web Ontology Language (OWL). Finally, the ontology is evaluated by means of transforming informal to formal competency questions, comparing it to existing semantic vocabularies, and calculat-ing ontology metrics. Evidence is shown that the CSM ontology covers the key representa-tional needs of the enterprise crowdsourcing domain. At the end of the technical report, cur-rent limitations are illustrated and directions for future research are proposed.:Table of Contents I List of Figures III List of Tables IV List of Code Listings V List of Abbreviations VI Abstract VIII 1 Introduction 1 2 Research Objective 4 3 Ontology Engineering 6 4 Purpose and Scope 9 4.1 Informal Competency Questions 10 4.2 Requirements 11 4.2.1 Functional Requirements 12 4.2.2 Non-Functional Requirements 15 5 Ontology Development 18 5.1 Conceptualization 18 5.1.1 System Review 18 5.1.2 Literature Review 21 5.2 Domain Capture 26 5.3 Integration 28 5.3.1 Semantic Vocabularies and Standards 28 5.3.2 Implications for the Design 33 5.4 Implementation 33 6 Evaluation 35 6.1 Transforming Informal to Formal Competency Questions 36 6.2 Comparing the Ontology to other Semantic Vocabularies 42 6.3 Calculating Ontology Metrics 44 7 Conclusion 46 8 References 48 Appendix A (System Review) i Appendix B (Crowdsourcing Taxonomies) v Appendix C (Data Dictionary) ix Appendix D (Semantic Vocabularies) xi Appendix E (CSM Ontology Source Code) xv Appendix F (Sample Data Instance 1) xxxi Appendix G (Sample Data Instance 2) xxxiv
4

Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments

Hetmank, Lars 01 September 2016 (has links)
The last couple of years have seen a fascinating evolution. While the early Web predominantly focused on human consumption of Web content, the widespread dissemination of social software and Web 2.0 technologies enabled new forms of collaborative content creation and problem solving. These new forms often utilize the principles of collective intelligence, a phenomenon that emerges from a group of people who either cooperate or compete with each other to create a result that is better or more intelligent than any individual result (Leimeister, 2010; Malone, Laubacher, & Dellarocas, 2010). Crowdsourcing has recently gained attention as one of the mechanisms that taps into the power of web-enabled collective intelligence (Howe, 2008). Brabham (2013) defines it as “an online, distributed problem-solving and production model that leverages the collective intelligence of online communities to serve specific organizational goals” (p. xix). Well-known examples of crowdsourcing platforms are Wikipedia, Amazon Mechanical Turk, or InnoCentive. Since the emergence of the term crowdsourcing in 2006, one popular misconception is that crowdsourcing relies largely on an amateur crowd rather than a pool of professional skilled workers (Brabham, 2013). As this might be true for low cognitive tasks, such as tagging a picture or rating a product, it is often not true for complex problem-solving and creative tasks, such as developing a new computer algorithm or creating an impressive product design. This raises the question of how to efficiently allocate an enterprise crowdsourcing task to appropriate members of the crowd. The sheer number of crowdsourcing tasks available at crowdsourcing intermediaries makes it especially challenging for workers to identify a task that matches their skills, experiences, and knowledge (Schall, 2012, p. 2). An explanation why the identification of appropriate expert knowledge plays a major role in crowdsourcing is partly given in Condorcet’s jury theorem (Sunstein, 2008, p. 25). The theorem states that if the average participant in a binary decision process is more likely to be correct than incorrect, then as the number of participants increases, the higher the probability is that the aggregate arrives at the right answer. When assuming that a suitable participant for a task is more likely to give a correct answer or solution than an improper one, efficient task recommendation becomes crucial to improve the aggregated results in crowdsourcing processes. Although some assumptions of the theorem, such as independent votes, binary decisions, and homogenous groups, are often unrealistic in practice, it illustrates the importance of an optimized task allocation and group formation that consider the task requirements and workers’ characteristics. Ontologies are widely applied to support semantic search and recommendation mechanisms (Middleton, De Roure, & Shadbolt, 2009). However, little research has investigated the potentials and the design of an ontology for the domain of enterprise crowdsourcing. The author of this thesis argues in favor of enhancing the automation and interoperability of an enterprise crowdsourcing environment with the introduction of a semantic vocabulary in form of an expressive but easy-to-use ontology. The deployment of a semantic vocabulary for enterprise crowdsourcing is likely to provide several technical and economic benefits for an enterprise. These benefits were the main drivers in efforts made during the research project of this thesis: 1. Task allocation: With the utilization of the semantics, requesters are able to form smaller task-specific crowds that perform tasks at lower costs and in less time than larger crowds. A standardized and controlled vocabulary allows requesters to communicate specific details about a crowdsourcing activity within a web page along with other existing displayed information. This has advantages for both contributors and requesters. On the one hand, contributors can easily and precisely search for tasks that correspond to their interests, experiences, skills, knowledge, and availability. On the other hand, crowdsourcing systems and intermediaries can proactively recommend crowdsourcing tasks to potential contributors (e.g., based on their social network profiles). 2. Quality control: Capturing and storing crowdsourcing data increases the overall transparency of the entire crowdsourcing activity and thus allows for a more sophisticated quality control. Requesters are able to check the consistency and receive appropriate support to verify and validate crowdsourcing data according to defined data types and value ranges. Before involving potential workers in a crowdsourcing task, requesters can also judge their trustworthiness based on previous accomplished tasks and hence improve the recruitment process. 3. Task definition: A standardized set of semantic entities supports the configuration of a crowdsourcing task. Requesters can evaluate historical crowdsourcing data to get suggestions for equal or similar crowdsourcing tasks, for example, which incentive or evaluation mechanism to use. They may also decrease their time to configure a crowdsourcing task by reusing well-established task specifications of a particular type. 4. Data integration and exchange: Applying a semantic vocabulary as a standard format for describing enterprise crowdsourcing activities allows not only crowdsourcing systems inside but also crowdsourcing intermediaries outside the company to extract crowdsourcing data from other business applications, such as project management, enterprise resource planning, or social software, and use it for further processing without retyping and copying the data. Additionally, enterprise or web search engines may exploit the structured data and provide enhanced search, browsing, and navigation capabilities, for example, clustering similar crowdsourcing tasks according to the required qualifications or the offered incentives.:Summary: Hetmank, L. (2014). Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments (Summary). Article 1: Hetmank, L. (2013). Components and Functions of Crowdsourcing Systems – A Systematic Literature Review. In 11th International Conference on Wirtschaftsinformatik (WI). Leipzig. Article 2: Hetmank, L. (2014). A Synopsis of Enterprise Crowdsourcing Literature. In 22nd European Conference on Information Systems (ECIS). Tel Aviv. Article 3: Hetmank, L. (2013). Towards a Semantic Standard for Enterprise Crowdsourcing – A Scenario-based Evaluation of a Conceptual Prototype. In 21st European Conference on Information Systems (ECIS). Utrecht. Article 4: Hetmank, L. (2014). Developing an Ontology for Enterprise Crowdsourcing. In Multikonferenz Wirtschaftsinformatik (MKWI). Paderborn. Article 5: Hetmank, L. (2014). An Ontology for Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments (Technical Report). Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155187.

Page generated in 0.0982 seconds