Spelling suggestions: "subject:"entropy"" "subject:"syntropy""
201 |
Guesswork and Entropy as Security Measures for Selective EncryptionLundin, Reine January 2012 (has links)
More and more effort is being spent on security improvements in today's computer environments, with the aim to achieve an appropriate level of security. However, for small computing devices it might be necessary to reduce the computational cost imposed by security in order to gain reasonable performance and/or energy consumption. To accomplish this selective encryption can be used, which provides confidentiality by only encrypting chosen parts of the information. Previous work on selective encryption has chiefly focused on how to reduce the computational cost while still making the information perceptually secure, but not on how computationally secure the selectively encrypted information is. Despite the efforts made and due to the harsh nature of computer security, good quantitative assessment methods for computer security are still lacking. Inventing new ways of measuring security are therefore needed in order to better understand, assess, and improve the security of computer environments. Two proposed probabilistic quantitative security measures are entropy and guesswork. Entropy gives the average number of guesses in an optimal binary search attack, and guesswork gives the average number of guesses in an optimal linear search attack. In information theory, a considerable amount of research has been carried out on entropy and on entropy-based metrics. However, the same does not hold for guesswork. In this thesis, we evaluate the performance improvement when using the proposed generic selective encryption scheme. We also examine the confidentiality strength of selectively encrypted information by using and adopting entropy and guesswork. Moreover, since guesswork has been less theoretical investigated compared to entropy, we extend guesswork in several ways and investigate some of its behaviors.
|
202 |
Entropy and SpeechNilsson, Mattias January 2006 (has links)
In this thesis, we study the representation of speech signals and the estimation of information-theoretical measures from observations containing features of the speech signal. The main body of the thesis consists of four research papers. Paper A presents a compact representation of the speech signal that facilitates perfect reconstruction. The representation is constituted of models, model parameters, and signal coefficients. A difference compared to existing speech representations is that we seek a compact representation by adapting the models to maximally concentrate the energy of the signal coefficients according to a selected energy concentration criterion. The individual parts of the representation are closely related to speech signal properties such as spectral envelope, pitch, and voiced/unvoiced signal coefficients, bene cial for both speech coding and modi cation. From the information-theoretical measure of entropy, performance limits in coding and classi cation can be derived. Papers B and C discuss the estimation of di erential entropy. Paper B describes a method for estimation of the di erential entropies in the case when the set of vector observations (from the representation) lie on a lower-dimensional surface (manifold) in the embedding space. In contrast to the method presented in Paper B, Paper C introduces a method where the manifold structures are destroyed by constraining the resolution of the observation space. This facilitates the estimation of bounds on classi cation error rates even when the manifolds are of varying dimensionality within the embedding space. Finally, Paper D investigates the amount of shared information between spectral features of narrow-band (0.3-3.4 kHz) and high-band (3.4-8 kHz) speech. The results in Paper D indicate that the information shared between the high-band and the narrow-band is insufficient for high-quality wideband speech coding (0.3-8 kHz) without transmission of extra information describing the high-band. / QC 20100914
|
203 |
Equivocation of Eve using two edge type LDPC codes for the binary erasure wiretap channelAndersson, Mattias, Rathi, Vishwambhar, Thobaben, Ragnar, Kliewer, Joerg, Skoglund, Mikael January 2010 (has links)
We consider transmission over a binary erasure wiretap channel using the code construction method introduced by Rathi et al. based on two edge type Low-Density Parity-Check (LDPC) codes and the coset encoding scheme. By generalizing the method of computing conditional entropy for standard LDPC ensembles introduced by Méasson, Montanari, and Urbanke to two edge type LDPC ensembles, we show how the equivocation for the wiretapper can be computed. We find that relatively simple constructions give very good secrecy performance and are close to the secrecy capacity. / <p>Copyright 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. QC 20120110</p>
|
204 |
Second law analysis of a liquid cooled battery thermal management system for hybrid and electric vehiclesRamotar, Lokendra 01 August 2010 (has links)
As hybrid and electric vehicles continue to evolve there is a need for better battery
thermal management systems (BTMS), which maintain uniformity of operating
temperature of the batteries in the vehicles. This thesis investigates the use of an
indirect liquid cooled system, which can be applied to hybrid and electric vehicles.
The design is modeled as part of the UOIT EcoCAR. The predominant focus of this
indirect liquid cooled system is the entropy generation in each of the components
within the system, as well as a total system analysis. Four main components of the
system are the battery module, heat exchanger, pump, and throttle. The battery
module coolant tubes and the entire heat exchanger model are developed. Various
parameters are changed in each component, leading to a decrease in entropy
generation depending on the variable changed. Of the four components identified, the
heat exchanger produced the majority of entropy generation, which leads to an overall
increase in system entropy generation. There are many factors to consider when
designing a liquid cooled BTMS. The new model shows a unique ability to improve
system performance by reducing the entropy generation in the BTMS. / UOIT
|
205 |
Aerosol Characterization and Analytical Modeling of Concentric Pneumatic and Flow Focusing Nebulizers for Sample IntroductionKashani, Arash 17 February 2011 (has links)
A concentric pneumatic nebulizer (CPN) and a custom designed flow focusing nebulizer (FFN)
are characterized. As will be shown, the classical Nukiyama-Tanasawa and Rizk-Lefebvre
models lead to erroneous size prediction for the concentric nebulizer under typical operating
conditions due to its specific design, geometry, dimension and different flow regimes. The
models are then modified to improve the agreement with the experimental results. The size
prediction of the modified models together with the spray velocity characterization are used to
determine the overall nebulizer efficiency and also employed as input to a new Maximum
Entropy Principle (MEP) based model to predict joint size-velocity distribution analytically. The
new MEP model is exploited to study the local variation of size-velocity distribution in contrast
to the classical models where MEP is applied globally to the entire spray cross section. As will
be demonstrated, the velocity distribution of the classical MEP models shows poor agreement
with experiments for the cases under study. Modifications to the original MEP modeling are
proposed to overcome this deficiency. In addition, the new joint size-velocity distribution agrees
better with our general understanding of the drag law and yields realistic results. / PhD
|
206 |
Set of periods, topological entropy and combinatorial dynamics for tree and graph mapsJuher Barrot, David 13 June 2003 (has links)
La tesi versa sobre sistemes dinàmics discrets 1-dimensionals, des d'un punt de vista combinatori i topològic. Estem interessats en les òrbites periòdiques i l'entropia topològica de les aplicacions contínues definides en arbres i grafs.El problema central és la caracterització del conjunt de períodes de totes les òrbites periòdiques d'una aplicació contínua d'un arbre en ell mateix. El teorema de Sharkovskii (1964) fou el primer resultat remarcable en aquest sentit. Aquest bonic teorema estableix que el conjunt de períodes d'una aplicació de l'interval és un segment inicial d'un ordre lineal (ordre de Sharkovskii). Recíprocament, donat qualsevol segment inicial d'aquest ordre, existeix una aplicació de l'interval que el té com a conjunt de períodes. Durant les darreres dècades hi ha hagut diversos intents de trobar resultats similars al de Sharkovskii per a altres espais 1-dimensionals. Recentment, el cas d'arbres ha estat tractat especialment. El Teorema de Baldwin (1991) resol el problema en el cas de les n-estrelles i ha estat un dels avenços més significatius en aquesta direcció. Aquest resultat estableix que el conjunt de períodes per a una aplicació de la n-estrella és unió finita de segments inicials de n ordres parcials (ordres de Baldwin), i recíprocament.El nostre objectiu principal és descriure l'estructura del conjunt de períodes de qualsevol aplicació contínua d'un arbre T en termes de les propietats combinatòries i topològiques de T: quantitat i disposició d'extrems, vèrtexs i arestes. En el capítol 1 discutim detalladament la manera més natural d'atacar el problema, i proposem una estratègia consistent en tres etapes consecutives. L'eina principal d'aquesta estratègia són els models minimals de patrons. Aquestes nocions es van desenvolupar i utilitzar durant les darreres dècades en el context de l'interval. En canvi, no es disposava de definicions operatives equivalents per a arbres, fins que al 1997 Alseda, Guaschi, Los, Manyosas i Mumbru proposaren de definir el patró d'un conjunt finit invariant P essencialment com una classe d'homotopia d'aplicacions relativa a P, i provaren (constructivament) que sempre existeix un model P-canònic amb propietats de minimalitat dinàmica. L'objectiu del capítol 2 és implementar completament el programa proposat, duent a terme les etapes 2 i 3. El resultat principal d'aquest capítol diu que, donada una aplicació g definida en un arbre T, existeix un conjunt S de successions finites d'enters positius tal que el conjunt de períodes de g és (excepte un conjunt finit explícitament acotat) una unió finita de segments inicials d'ordres de Baldwin donats en termes del conjunt S, que depèn de les propietats combinatòries de l'arbre T. També provem el recíproc. En el capítol 3 duem a terme experiments informàtics sobre la minimalitat dinàmica dels models canònics. En un esperit de programació modular, hem dissenyat moltes funcions autocontingudes que poden ser usades per implementar una gran varietat d'aplicacions d'ús divers. Entre altres, tenim funcions que calculen el model canònic d'un patró donat per l'usuari, calculen la matriu de Markov associada a un model monòton a trossos i extreuen tots els llaços simples d'una matriu de transició de Markov. Finalment, en el capítol 4 generalitzem alguns resultats de Block i Coven, Misiurewicz i Nitecki i Takahashi, en els quals l'entropia topològica d'una aplicació de l'interval s'aproxima per les entropies de les seves òrbites periòdiques. Hem provat relacions anàlogues en el context de les aplicacions de grafs. / This memoir deals with one-dimensional discrete dynamical systems, from both a topological and a combinatorial point of view. We are interested in the periodic orbits and topological entropy of continuous self-maps defined on trees and graphs.The central problem is the characterisation of the set of periods of all periodic orbits exhibited by any continuous map from a tree into itself. The Sharkovskii's Theorem (1964) was the first remarkable result in this setting. This theorem states that the set of periods of any interval map is an initial segment of a linear ordering (the so-called Sharkovskii ordering). Conversely, given any initial segment of the Sharkovskii ordering, there exists an interval map whose set of periods coincides with it.During the last decades there have been several attempts to find results similar to that of Sharkovskii for other one-dimensional spaces. Recently, the case of maps defined on general trees has been specially treated. Baldwin's Theorem (1991), which solves the problem in the case of n-stars for any n, has been one of the most significant advances in this direction. This result states that the set of periods of any n-star map is a finite union of initial segments of n-many partial orderings (the Baldwin orderings). The converse is also true.Our main purpose is to describe the generic structure of the set of periods of any continuous self-map defined on a tree T in terms of the combinatorial and topological properties of T: amount and arrangement of endpoints, vertices and edges. In Chapter 1 we make a detailed discussion about which is the more natural approach to this problem, and we propose a strategy consisting on three consecutive stages and using minimal models of patterns as the main tool. These notions were developed in the context of interval maps and widely used in a number of papers during the last two decades. However, equivalent operative definitions for tree maps were not available until 1997, when Alseda, Guaschi, Los, Manosas and Mumbru proposed to define the pattern of a finite invariant set P essentially as a homotopy class of maps relative to the points of P, and proved (constructively) that there always exists a P-canonical model displaying dynamic minimality properties.The goal of Chapter 2 is to implement in full the above programme by completing stages 2 and 3. The main result of Chapter 2 tells us that for each tree map g defined on a tree T there exists a finite set S of sequences of positive integers such that the set of periods of g is (up to an explicitly bounded finite set) a finite union of initial segments of Baldwin orderings, given in terms of the set S, which depends on the combinatorial properties of the tree T. We also prove the converse result.In Chapter 3 we report some computer experiments on the minimality of the dynamics of canonical models. In a spirit of modular programming, we have designed lots of self-contained functions which can be used to implement a wide variety of several-purpose software. Among other, we have functions that: compute the canonical model of a pattern provided by the user, calculate the Markov transition matrix associated to a piecewise monotone tree map and extract all the simple loops of a given length from a Markov transition matrix.Finally, in Chapter 4 we generalize some results of Block & Coven, Misiurewicz & Nitecki and Takahashi, where the topological entropy of an interval map was approximated by the entropies of its periodic orbits. We prove analogous relations in the setting of graph maps.
|
207 |
Interior-Point Algorithms Based on Primal-Dual EntropyLuo, Shen January 2006 (has links)
We propose a family of search directions based on primal-dual entropy in the context of interior point methods for linear programming. This new family contains previously proposed search directions in the context of primal-dual entropy. We analyze the new family of search directions by studying their primal-dual affine-scaling and constant-gap centering components. We then design primal-dual interior-point algorithms by utilizing our search directions in a homogeneous and self-dual framework. We present iteration complexity analysis of our algorithms and provide the results of computational experiments on NETLIB problems.
|
208 |
Entanglement Entropy in Quantum GravityDonnelly, William January 2008 (has links)
We study a proposed statistical explanation for the Bekenstein-Hawking entropy of a black hole in which entropy arises quantum-mechanically as a result of entanglement. Arguments for the identification of black hole entropy with entanglement entropy are reviewed in the framework of quantum field theory, emphasizing the role of renormalization and the need for a physical short-distance cutoff.
Our main novel contribution is a calculation of entanglement entropy in loop quantum gravity. The kinematical Hilbert space and spin network states are introduced, and the entanglement entropy of these states is calculated using methods from quantum information theory. The entanglement entropy is compared with the density of states previously computed for isolated horizons in loop quantum gravity, and the two are found to agree up to a topological term.
We investigate a conjecture due to Sorkin that the entanglement entropy must be a monotonically increasing function of time under the assumption of causality. For a system described by a finite-dimensional Hilbert space, the conjecture is found to be trivial, and for a system described by an infinite-dimensional Hilbert space a counterexample is provided.
For quantum states with Euclidean symmetry, the area scaling of the entanglement entropy is shown to be equivalent to the strong additivity condition on the entropy. The strong additivity condition is naturally interpreted in information-theoretic terms as a continuous analog of the Markov property for a classical random variable. We explicitly construct states of a quantum field theory on the one-dimensional real line in which the area law is exactly satisfied.
|
209 |
Bayesian Analysis of Intratumoural Oxygen DataTang, Herbert Hoi Chi January 2009 (has links)
There is now ample evidence to support the notion that a lack of oxygen (hypoxia) within the tumour adversely affects the outcome of radiotherapy and whether a patient is able to remain disease free. Thus, there is increasing interest in accurately determining oxygen concentration levels within a tumour. Hypoxic regions arise naturally in cancerous tumours because of their abnormal vasculature and it is believed that oxygen is necessary in order for radiation to be effective in killing cancer cells. One method of measuring oxygen concentration within a tumour is the Eppendorf polarographic needle electrode; a method that is favored by many clinical researchers because it is the only device that is inserted directly into the tumour, and reports its findings in terms of oxygen partial pressure (PO2). Unfortunately, there are often anomalous readings in the Eppendorf measurements (negative and extremely high values) and there is little consensus as to how best to interpret the data. In this thesis, Bayesian methods are applied to estimate two measures commonly used to quantify oxygen content within a tumour in the current literature: the median PO2, and Hypoxic Proportion (HP5), the percentage of readings less than 5mmHg. The results will show that Bayesian methods of parameter estimation are able to reproduce the standard estimate for HP5 while providing an additional piece of information, the error bar, that quantifies how uncertain we believe our estimate to be. Furthermore, using the principle of Maximum Entropy, we will estimate the true median PO2 of the distribution instead of simply relying on the sample median, a value which may or may not be an accurate indication of the actual median PO2 inside the tumour. The advantage of the Bayesian method is that it takes advantage of probability theory and presents its results in the form of probability density functions. These probability density functions provide us with more information about the desired quantity than the single number that is produced in the current literature and allows us to make more accurate and informative statements about the measure of hypoxia that we are trying to estimate.
|
210 |
Interior-Point Algorithms Based on Primal-Dual EntropyLuo, Shen January 2006 (has links)
We propose a family of search directions based on primal-dual entropy in the context of interior point methods for linear programming. This new family contains previously proposed search directions in the context of primal-dual entropy. We analyze the new family of search directions by studying their primal-dual affine-scaling and constant-gap centering components. We then design primal-dual interior-point algorithms by utilizing our search directions in a homogeneous and self-dual framework. We present iteration complexity analysis of our algorithms and provide the results of computational experiments on NETLIB problems.
|
Page generated in 0.0407 seconds