• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilisation non linéaire des équations de la magnétohydrodynamique et applications aux écoulements multiphasiques / Nonlinear stabilization of magnetohydrodynamic equations and applications to multiphase flows

Cappanera, Loïc 03 December 2015 (has links)
Les travaux présentés dans ce manuscrit se concentrent sur l'approximation numérique des équations de la magnétohydrodynamique (MHD) et sur leur stabilisation pour des problèmes caractérisés par des nombres de Reynolds cinétique élevés ou par des écoulements multiphasiques. Nous validons numériquement un nouveau modèle de Simulation des Grandes Echelles (ou Large Eddy Simulations, LES), dit de viscosité entropique, sur des écoulements de cylindre en précession ou créés par des turbines contra-rotatives (écoulement de Von Kármán). Ces études sont réalisées avec le code MHD SFEMaNS développé par J.-L. Guermond et C. Nore depuis 2002 pour des géométries axisymétriques. Ce code est basé sur une décomposition spectrale dans la direction azimutale et des éléments finis de Lagrange dans un plan méridien. Nous adaptons une méthode de pseudo-pénalisation pour prendre en compte des turbines en mouvement, ce qui étend le code SFEMaNS à des géométries quelconques. Nous présentons aussi une méthode originale d'approximation des équations de Navier-Stokes à densité variable qui utilise la quantité de mouvement comme variable et la viscosité entropique pour stabiliser les équations de la masse et du mouvement. / The investigations presented in this manuscript focus on the numerical approximation of the magnetohydrodynamics (MHD) equations and on their stabilization for problems involving either large kinetic Reynolds numbers or multiphase flows. We validate numerically a new Large Eddy Simulation (LES) model, called entropy viscosity, on flows driven by precessing cylindrical containers or counter-rotating impellers (Von Kármán flow). These studies are performed with SFEMaNS MHD-code developed by J.-L. Guermond and C. Nore since 2002 for axisymmetric geometries. This code is based on a spectral decomposition in the azimuthal direction and a Lagrange finite element approximation in a meridian plane. We adapt a pseudo-penalization method to report the action of rotating impellers that extends the range of SFEMaNS's applications to any geometry. We also present an original approximation method of the Navier-Stokes equations with variable density. This method uses the momentum as variable and stabilizes both mass and momentum equations with the same entropy viscosity.
2

Results towards a Scalable Multiphase Navier-Stokes Solver for High Reynolds Number Flows

Thompson, Travis Brandon 16 December 2013 (has links)
The incompressible Navier-Stokes equations have proven formidable for nearly a century. The present difficulties are mathematical and computational in nature; the computational requirements, in particular, are exponentially exacerbated in the presence of high Reynolds number. The issues are further compounded with the introduction of markers or an immiscible fluid intended to be tracked in an ambient high Reynolds number flow; despite the overwhelming pragmatism of problems in this regime, and increasing computational efficacy, even modest problems remain outside the realm of direct approaches. Herein three approaches are presented which embody direct application to problems of this nature. An LES model based on an entropy-viscosity serves to abet the computational resolution requirements imposed by high Reynolds numbers and a one-stage compressive flux, also utilizing an entropy-viscosity, aids in accurate, efficient, conservative transport, free of low order dispersive error, of an immiscible fluid or tracer. Finally, an integral commutator and the theory of anti-dispersive spaces is introduced as a novel theoretical tool for consistency error analysis; in addition the material engenders the construction of error-correction techniques for mass lumping schemes.
3

Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic Problems with Entropy-Based Artificial Viscosity Stabilization

Zingan, Valentin Nikolaevich 2012 May 1900 (has links)
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.

Page generated in 0.0562 seconds