• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • Tagged with
  • 243
  • 243
  • 243
  • 73
  • 66
  • 52
  • 45
  • 43
  • 41
  • 40
  • 39
  • 36
  • 33
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Projecting Future Climate Change Impacts on Heat-Related Mortality in Large Urban Areas in China

Li, Ying, Ren, Ting, Kinney, Patrick L., Joyner, Andrew, Zhang, Wei 01 May 2018 (has links)
Global climate change is anticipated to raise overall temperatures and has the potential to increase future mortality attributable to heat. Urban areas are particularly vulnerable to heat because of high concentrations of susceptible people. As the world's largest developing country, China has experienced noticeable changes in climate, partially evidenced by frequent occurrence of extreme heat in urban areas, which could expose millions of residents to summer heat stress that may result in increased health risk, including mortality. While there is a growing literature on future impacts of extreme temperatures on public health, projecting changes in future health outcomes associated with climate warming remains challenging and underexplored, particularly in developing countries. This is an exploratory study aimed at projecting future heat-related mortality risk in major urban areas in China. We focus on the 51 largest Chinese cities that include about one third of the total population in China, and project the potential changes in heat-related mortality based on 19 different global-scale climate models and three Representative Concentration Pathways (RCPs). City-specific risk estimates for high temperature and all-cause mortality were used to estimate annual heat-related mortality over two future twenty-year time periods. We estimated that for the 20-year period in Mid-21st century (2041-2060) relative to 1970-2000, incidence of excess heat-related mortality in the 51 cities to be approximately 37,800 (95% CI: 31,300-43,500), 31,700 (95% CI: 26,200-36,600) and 25,800 (95% CI: 21,300-29,800) deaths per year under RCP8.5, RCP4.5 and RCP2.6, respectively. Slowing climate change through the most stringent emission control scenario RCP2.6, relative to RCP8.5, was estimated to avoid 12,900 (95% CI: 10,800-14,800) deaths per year in the 51 cities in the 2050s, and 35,100 (95% CI: 29,200-40,100) deaths per year in the 2070s. The highest mortality risk is primarily in cities located in the North, East and Central regions of China. Population adaptation to heat is likely to reduce excess heat mortality, but the extent of adaptation is still unclear. Future heat mortality risk attributable to exposure to elevated warm season temperature is likely to be considerable in China's urban centers, with substantial geographic variations. Climate mitigation and heat risk management are needed to reduce such risk and produce substantial public health benefits.
62

Cobenefits of Global and Domestic Greenhouse Gas Emissions for Air Quality and Human Health

West, Jason, Zhang, Yuqiang, Smith, Steven, Silva, Raquel, Bowden, Jared, Naik, Vaishali, Li, Ying, Gilfillan, Dennis, Adelman, Zachariah, Fry, Meredith, Anenberg, Susan, Horowitz, Larry, Lamarque, Jean-Francois 01 April 2017 (has links)
Abstract available in the Lancet.
63

Climate Change Impacts on Heat-Related Mortality in Large Urban Areas in China

Li, Ying 17 June 2017 (has links)
Global climate change is anticipated to raise overall temperatures and is likely to increase future mortality attributable to heat. Urban areas are particularly vulnerable to heat because of high concentrations of susceptible people. As the world’s largest developing country and the largest carbon emitter, China has experienced noticeable changes in climate, partially evidenced by frequent occurrence of extreme heat in urban areas, which could expose millions of residents to summer heat stress that may result in increased health risk, including mortality. While there is a growing literature on future impacts of extreme temperatures on public health, projecting changes in future health outcomes associated with climate warming remains challenging, with the related health impacts in developing countries largely unexplored. This is an exploratory study aimed at projecting future heat-related mortality risk in major metropolitan areas in China. We focus on 50 large Chinese cities that cover about 1/3 of the total population in China, and propose to assess the potential changes in heat-related mortality under 19 different global-scale climate models and three Representative Concentration Pathways (RCPs) used in the latest Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). We project future changes in heat-related mortality in the 2050s and 2070s relative to the base period of 1950-2000. The projections are based on an integrated assessment framework that combines high-resolution climate model outputs, city-specific temperature-mortality relationships, population projections and baseline mortality rates. Future temperature changes in the study areas are estimated based on downscaled climate model outputs at a spatial resolution of about 1 square kilometer. City-specific historical temperature-mortality associations are obtained from the epidemiological literature. Population projections are based on the China census 2010 survey and projected population growth rates from the 2015 Revision of World Population Prospects by the United Nations. Baseline mortality rates are obtained from China’s national and local health statistics publications. Our findings suggest that future heat mortality risk attributable to elevated warm season temperature is likely to be significant in China’s urban areas, with substantial geographic variations, highlighting the significance of climate mitigation and local-level heat risk management.
64

Co-Benefits of Global and Domestic Greenhouse Gas Emissions for Air Quality and Human Health

West, Jason, Zhang, Yuquiang, Smith, Steven, Silva, Raquel, Bowden, Jared, Naik, Vaishali, Li, Ying, Gilfillan, Dennis, Adelman, Zachariah, Fry, Meredith, Anenberg, Susan, Horowitz, Larry, Lamarque, Jean-Francois 01 October 2017 (has links)
No description available.
65

Evaluation of China’s Mercury Emission Controls In The Coal-Fired Power Industry: Projection For The Health And Welfare Effects Projecting Future Climate Change Impacts On Heat-Related Mortality In Large Urban Areas In China

Zhang, Wei, Zheng, Genchong, Chen, Long, Wang, Huanhuan, Li, Ying, Ye, Xuejie, Tong, Yindong, Zhu, Yan, Wang, Xuejun 13 December 2017 (has links)
No description available.
66

Projecting Future Climate Change Impacts on Heat-Related Mortality in Large Urban Areas in China

Li, Ying, Ting, Ren, Zhang, Wei 13 December 2017 (has links)
No description available.
67

The Impacts of Climate Change on Heat-Relate Mortality: National Estimates in China and the University States Using Dynamically Downscaled Climate Projections

Li, Ying 01 June 2017 (has links)
No description available.
68

Using BenMAP (Environmental Benefits Mapping and Analysis Program) to Evaluate Health Benefits of Air Pollution Control

Li, Ying 01 June 2017 (has links)
No description available.
69

Comparing Urban and Rural Vulnerability to Heat-Related Mortality: A Systematic Review and Meta-Analysis

Li, Ying, Odamne, Emmanuel A., Silver, Ken, Zheng, Shimin 27 October 2017 (has links)
Studies of the adverse impacts of high temperature on human health have primarily focused on urban areas, due in part to urban centers generally having higher population density and often being warmer than surrounding rural areas (the “urban heat island” effect). As a result, urban areas are often considered to be more vulnerable to summer heat. However, heat vulnerability may not only be determined by heat exposure, but also by other population characteristics such as age, education, income, baseline health status, and social isolation. These factors are likely to increase vulnerability among rural populations compared to urban populations. In this exploratory study, we compare the vulnerability to heat-related mortality between rural and urban communities through a systematic review and meta-analysis of existing epidemiological studies, based on the idea that urbanicity can be considered as a “combined” indicator of climate variables and socioeconomic variables. We searched studies that examined the association between high ambient temperature and mortality in both rural and urban settings published between 2000 and 2017. A random-effects meta-analysis of Ratios of Relative Risks (RRR) of heat-related mortality in rural compared to urban areas (RRrural/RRurban) was performed. The pooled RRR was 1.033 (95% CI = 0.969, 1.103), which indicates that the rural relative risk is about 3.3% larger than the urban relative risk. Heterogeneity measures show considerable heterogeneity across studies. Our findings suggest that vulnerability to heat-related mortality in rural areas is likely to be similar to or even greater than urban areas. More studies, particularly studies in developing nations, are needed to understand rural vulnerability to heat hazards as a basis for providing better guidance for heat action plans.
70

Responses of Cytochrome P450IA in Freshwater Fish Exposed to Pulp Mill Effluents in Experimental Stream Channels

Bankey, Laura Anne 01 January 1993 (has links)
No description available.

Page generated in 0.1602 seconds