• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 155
  • 155
  • 111
  • 109
  • 109
  • 107
  • 60
  • 55
  • 51
  • 48
  • 46
  • 34
  • 33
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Role of the Light Intermediate Chains in Cytoplasmic Dynein Function: a Dissertation

Tynan, Sharon H. 21 March 2000 (has links)
Cytoplasmic dynein is a multisubunit complex involved in retrograde transport of cellular components along microtubules. The heavy chains (HC) are very large catalytic subunits which possess microtubule binding ability. The intermediate chains (IC) are responsible for targeting dynein to its appropriate cargo by interacting with the dynactin complex. The light intermediate chains (LIC) are previously unexplored subunits that have been proposed to modulate dynein activity by regulating the motor or the IC-dynactin interaction. The light chains (LC) are a newly identified class of subunit which are also thought to have regulatory functions. In the first part of this work, I analyzed the relationship between the four SDS-PAGE gel bands that comprise the light intermediate chains. 1- and 2-D electrophoresis before and after alkaline phosphatase treatment revealed that the four bands are derived from two different polypeptides, each of which is phosphorylated. Peptide microsequencing of these subunits yielded sequences that indicated similarity between them. cDNA cloning of the rat LICs revealed the presence of a conserved P-loop sequence and a very high degree of homology between the two different rat LICs and among LICs from different species. The second series of experiments was designed to analyze the association of pericentrin with cytoplasmic dynein. First, various dynein and dynactin subunits were co-associate with pericentrin in these experiments. Co-precipitation from 35S labeled cell extracts revealed a direct interaction between LIC and pericentrin. Comparison of pericentrin binding by LICl and LIC2 showed that only LICl was able to bind. Further investigation of the relationship between LICl and LIC2 demonstrated that each LIC will self-associate, but they will not form heterooligomers. Additionally, using co-overexpression and immunoprecipitation of LICl, LIC2, and HC, I have shown that binding of the two LICs to HC is mutually exclusive. Finally, I investigated the relationships between dynein HC, IC, and LIC by examining the interactions among the subunits. IC and LIC were both found to bind to the HC, but not to each other. Despite the lack of interaction between IC and LIC, they are, in fact, present in the same dynein complexes and they have partially overlapping binding sites within the N-terminal sequence of the HC. The HC dimerization site was determined to extend through a large portion of the N-terminus, and it includes both the IC and LIC binding sites, although these subunits are not required for dimerization. Together these studies implicate the light intermediate chains in dynein targeting. Targeting of dynein to its cargo has been thought to be performed by the dynactin complex, and for one particular cargo, the kinetochore, there is considerable evidence to support this model. The results presented here suggest that the light intermediate chains appear to function in a separate, non-dynactin-based targeting mechanism.
12

Epigenetic Determinants of Altered Gene Expression in Schizophrenia: a Dissertation

Huang, Hsien-Sung 09 May 2008 (has links)
Schizophrenia is a neurodevelopmental disorder affecting 1% of the general population. Dysfunction of the prefrontal cortex (PFC) is associated with the etiology of schizophrenia. Moreover, a substantial deficit of GAD1mRNA in schizophrenic PFC has been reported by different groups. However, the underlying molecular mechanisms are still unclear. Interestingly, epigenetic factors such as histone modifications and DNA methylation could be involved in the pathogenesis of schizophrenia during the maturation of the PFC. In my work, I identified potential epigenetic changes in schizophrenic PFC and developmental changes of epigenetic marks in normal human PFC. Furthermore, mouse and neuronal precursor cell models were used to confirm and investigate the molecular mechanisms of the epigenetic changes in human PFC. My initial work examined whether chromatin immunoprecipitation can be applied to human postmortem brain. I used micrococcal nuclease (MNase)-digested chromatin instead of cross-linked and sonicated chromatin for further immunoprecipitation with specific anti-methyl histone antibodies. Surprisingly, the integrity of mono-nucleosomes was still maintained at least 30 hrs after death. Moreover, differences of histone methylation at different genomic loci were detectable and were preserved within a wide range of autolysis times and tissue pH values. Interestingly, MNase-treated chromatin is more efficient for subsequent immunoprecipitation than crosslinked and sonicated chromatin. During the second part of my dissertation work, I profiled histone methylation at GABAergic gene loci during human prefrontal development. Moreover, a microarray analysis was used to screen which histone methyltransferase (HMT) could be involved in histone methylation during human prefrontal development. Mixed-lineage leukemia 1 (MLL1), an HMT for methylation at histone H3 lysine 4 (H3K4), appears to be the best candidate after interpreting microarray results. Indeed, decreased methylation of histone H3 lysine 4 at a subset of GABAergic gene loci occurred in Mll1 mutant mice. Interestingly, clozapine, but not haloperidol, increased levels of trimethyl H3K4 (H3K4me3) and Mll1 occupancy at the GAD1 promoter. I profiled histone methylation and gene expression for GAD1 in schizophrenics and their matched controls. Interestingly, there are deficits of GAD1 mRNA levels and GAD1 H3K4me3 in female schizophrenics. Furthermore, I was also interested in whether the changes of GAD1 chromatin structure could contribute to cortical pathology in schizophrenics with GAD1 SNPs. Remarkably, homozygous risk alleles for schizophrenia at the 5’ end of the GAD1 gene are associated with a deficit of GAD1 mRNA levels together with decreased GAD1 H3K4me3 and increased GAD1H3K27me3 in schizophrenics. Finally, I shifted focus on whether DNA methylation at the GAD1 promoter could contribute to a deficit of GAD1 mRNA in schizophrenia. However, no reproducible techniques are available for extracting genomic DNA specifically from GABAergic neurons in human brain. Therefore, I used an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of active and silenced gene expression. The methylation frequencies of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined from two chromatin fractions (H3K4me3 and H3K27me3) separately. Consistently, the proximal promoter region of GAD1 is more resistant to methylation in comparison to intron 2 of GAD1 in either open or repressive chromatin fractions. Interestingly, overall higher levels of DNA methylation were seen in repressive chromatin than in open chromatin. Surprisingly, schizophrenic subjects showed a significant decrease of DNA methylation at the GAD1proximal promoter from repressive chromatin. Taken together, my work has advanced our knowledge of epigenetic mechanisms in human prefrontal development and the potential link to the etiology of schizophrenia. It could eventually provide a new approach for the treatment of schizophrenia, especially in the regulation of methylation at histone H3 lysine 4.
13

Conserved Features of Chromatin Remodeling Enzymes: A Dissertation

Boyer, Laurie A. 21 August 2000 (has links)
Chromatin structure plays an essential role in the regulation of many nuclear processes such as transcription, replication, recombination, and repair. It is generally accepted that chromatin remodeling is a prerequisite step in gene activation. Over recent years, large multisubunit enzymes that regulate the accessibility of nucleosomal DNA have emerged as key regulators of eukaryotic transcription. It seems likely that similar enzymes contribute to the efficiency of DNA replication, recombination, and repair. These chromatin remodeling complexes can be classified into two broad groups: (1) the ATP-dependent enzymes, which utilize the energy of ATP hydrolysis to increase the accessibility of nucleosomal DNA; and (2) histone modifying enzymes that phosphorylate, acetylate, methylate, ubiquitinate, or ADP-ribosylate the nucleosomal histones (for review see Kingston and Narlikar, 1999; Muchardt and Yaniv, 1999; Brown et al., 2000; Vignali et al., 2000; Strahl and Allis, 2000). The mechanism by which these two groups of large, multi-subunit enzymes function to alter chromatin structure is enigmatic. Studies suggest that ATP-dependent and histone acetyltransferase chromatin remodeling enzymes have widespread roles in gene expression and perform both independent and overlapping functions. Interestingly, although both groups of enzymes appear to be distinct, several features of these enzymes have been conserved from yeast to man. Thus, understanding the role of these similar features will be essential in order to elucidate the function of remodeling enzymes, their functional interrelationships, and may uncover the fundamental principals of chromatin remodeling. In this study, we use a combination of yeast molecular genetics and biochemistry to dissect out the function of individual parts of these chromatin remodeling machines and to understand how these large macromolecular assemblies are put together. In addition, we also investigate the mechanism by which the ATP-dependent enzymes exert their regulatory effects on chromatin structure. Structure/function analysis of Saccharomyces cerevisiaeSwi3p (conserved in SWI/SNF complexes across all eukaryotic phyla) reveals a unique scaffolding role for this protein as it is essential for assembly of SWI/SNF subunits. We have also characterized a novel motif that has homology to the Myb DNA binding domain, the SANT domain, and that is shared among transcriptional regulatory proteins implicated in chromatin remodeling. Mutational analysis of this domain in yeast Swi3p (SWI/SNF), Rsc8/Swh3p (RSC), and Ada2p (GCN5 HATs) reveals an essential function for the SANT domain in chromatin remodeling. Moreover, our studies suggest that this novel motif may be directly involved in mediating a functional interaction with chromatin components (i.e. histone amino terminal domains). We have also directly compared the activities of several members of the ATP-dependent chromatin remodeling enzymes. Surprisingly, we find that these enzymes utilize similar amounts of ATP to increase nucleosomal DNA accessibility. In as much, we show that changes in histone octamer comformation or composition is not a requirement or consequence of chromatin remodeling by SWI/SNF. Taken together, these data suggest a similar mechanism for ATP-utilizing chromatin remodeling enzymes in which disruption of histone-DNA contacts occur without consequence to the structure of the histone octamer. These data have striking implications for how we view the mechanism of chromatin remodeling.
14

A Genetic and Structural Analysis of P22 Lysozyme: A Thesis

Rennell, Dale 01 February 1988 (has links)
P22 lysozyme, encoded by gene 19, is an essential phage protein responsible for hydrolyzing the bacterial cell wall during lytic infection. P22 lysozyme is related to T4 lysozymein its mode of action, substrate specificities, and in its structure. Gene 19 was located on the phage genome, subcloned, and then sequenced. lysozyme was produced in large quantities and purified for biochemical characterization and for crystallograpic studies. Gene 19consists of 146 codons, and encodes a protein with a molecular weight of 16,117. Amber mutations were created in gene 19 by in vitro primer-directed mutagenesis. The mutations were crossed by homologous recombination onto the phage genome. The phages bearing the amber mutations in gene 19 were screened for the ability to grow on six different amber suppressor strains. Amino acid substitutions that resulted in nonfunctional or less functional lysozyme were determined. Of 60 possible amino acid substitutions at 11 different sites in P22 lysozyme, 20 are deleterious. The phage bearing amber mutations in gene 19that failed to grow on given suppressor strains were reverted and second site intragenic revertants were obtained. The mutations were sequenced. A substitution of serine for glutamine at residue 82 is compensated for by changing residue 46 from serine to leucine. This single change enables the phage to form a plaque at 300C but not at 400C. When the triple change asn42->lys; ser46->leu; and ser43->pro is present the lysozyme produced is no longer temperature sensitive. The crystal structure of P22 lysozyme is not yet solved. Assuming that the structures of T4 lysozyme and P22 lysozyme are similar, one can examine the positions of equivalent residues in the T4 lysozyme structure. The spatial arrangement of the residues changed by the secondary site mutations and the original substitution can then be visualized. The mutations discussed above all map far from the original mutation on the T4 three dimensional model. A substitution of leucine for tyrosine at position 22 is compensated for by the double mutation of arg18->ser and ser23->lys. When the equivalent residues are mapped on the T4 three dimensional model the changes map in close proximity to the original mutation.
15

Biochemical Studies on the Hemolymph Trypsin Inhibitors of the Tobacco Hornworm Manduca Sexta: A Thesis

Ramesh, Narayanaswamy 01 March 1986 (has links)
Trypsin inhibitory activity from the hemolymph of the tobacco hornworm, Manduca sexta, was purified by affinity chromatography on immobilized trypsin and resolved into two fractions with molecular weights of 13700 (inhibitor A) and 8000 (inhibitor B) by Sephadex G-75 gel filtration. SDS-polyacrylamide gel electrophoresis under non-reducing conditions gave a molecular weight estimate of 15000 for inhibitor A and 8500 for inhibitor B. Electrophoresis of these inhibitors under reducing conditions on polyacrylamide gels gave molecular weight estimates of 8300 and 9100 for inhibitor A and inhibitor B, respectively, suggesting that inhibitor A is a dimer. Isoelectro-focusing on polyacrylamide gels focused inhibitor A as a single band with pI of 5.7, whereas inhibitor B was resolved into two components with pIs of 5.3 and 7.1. Both inhibitors A and B are stable at 100° C and at pH 1.0 for at least 30 minutes, but both are inactivated by dithiothreitol even at room temperature and non-denaturing conditions. Inhibitors A and B inhibit trypsin, chymotrypsin, plasmin, and thrombin but they do not inhibit elastase, papain, pepsin, subtilisin BPN' and thermolysin. In fact, subtilisin BPN' completely inactivated both inhibitors A and B. Inhibitor A and inhibitor B form stable complexes with trypsin. Stoichiometric studies showed that inhibitor A combines with trypsin and chymotrypsin in a 1:1 molar ratio. The inhibition constants (Ki) for trypsin and chymotrypsin inhibition by inhibitor A were estimated to be 1.45 x 10-8 M and 1.7 x 10-8M, respectively. Inhibitor A in complex with chymotrypsin does not inhibit trypsin (and vice versa) suggesting that inhibitor A has a common binding site for trypsin and chymotrypsin. The amino terminal amino acid sequences of inhibitors A and B revealed that both these inhibitors are homologous to the bovine pancreatic trypsin inhibitor (Kunitz) . Quantitation of the trypsin inhibitory activity in the hemolymph of the larval and the pupal stages of Manduca sexta showed that the trypsin inhibitory activity decreased from larval to the pupal stage. Further, inhibitor A at the concentration tested caused approximately 50% reduction in the rate of proteolytic activation of prophenoloxidase in a hemocyte lysate preparation from Manduca sexta, suggesting that inhibitor A may be involved in the regulation of prophenoloxidase activation. However, inhibitor B was not effective even at three times the concentration of inhibitor A. Since activation of prophenoloxidase has been suggested to resemble the activation of alternative pathway of complement, the effect of inhibitors A and B and the hemolymph of Manduca sexta on human serum alternative pathway complement activity was evaluated. The results showed that, although inhibitors A and B do not affect human serum alternative complement pathway, other proteinaceous component(s) in Manduca sexta hemolymph interact(s) and cause(s) an inhibition of human serum alternative complement pathway when tested using rabbit erythrocyte hemolytic assay.
16

Molecular Basis of the Mechanism and Regulation of Receptor-GTP Binding Protein Interactions: A Thesis

Wessling-Resnick, Marianne 01 June 1997 (has links)
The photon receptor, rhodopsin, and the GTP-binding regulatory protein, transducin, belong to a family of G protein-coupled receptors. The activation process through which guanine nucleotide exchange of the G protein is accomplished was investigated utilizing these components of the visual transduction system. Rhodopsin, modelled as an enzyme in its interaction with substrates, transducin and guanine nucleotides, was characterized to catalyze the G protein's activation by a double-displacement mechanism. Remarkable allosteric behavior was observed in these kinetic studies. Equilibrium binding studies were performed to investigate the molecular basis of the positive cooperative behavior between transducin and rhodopsin. These experiments show that the origins of the allosterism must arise from oligomeric assemblies between receptor and G protein. The determined Hill coefficient, nH = 2, suggests that at least two transducin molecules are involved, and the Bmax parameter a1so indicates that multimeric assemblies of rhodopsin may participate in the positive cooperative interactiions. Physical studies of transducin in solution were performed and do not indicate the existence of a dimeric structure, in contrast to the kinetic and binding experiments which analyze interactions at the membrane surface. Since the latter environment represents the native surroundings in vivo, aspects of the allosteric behavior must be considered for a complete understanding of the signal transduction mechanism. The reported findings are interpreted in the context of homologies between other G protein-coupled receptor systems in order to develop a model for the molecular basis of the mechanism and regulation of this mode of signal transduction.
17

The Role of Tec Kinases in CD4<sup>+</sup> T Cell Activation: A Dissertation

Li, Cheng-Rui Michael 27 October 2005 (has links)
The Tec family tyrosine kinases Itk, Tec and Rlk are expressed in T cells. Previous studies have established that these kinases are critical for TCR signaling, leading to the activation of PLCγ1. To further understand the functions of Tec kinases in T cell activation, we took three different approaches. First, we performed a thorough analysis of CD28-mediated signaling events and functional responses with purified naïve T cells from Itk-/- mice and a highly controlled stimulation system. Data from this set of studies definitively demonstrate that CD28 costimulation functions efficiently in naïve CD4+ T cells in the absence of Itk. Second, in order to further study the functions of Tec kinases in vivo, we generated transgenic mouse lines expressing a kinase-dead (KD) mutant of Tec on the Itk-/-Rlk-/- background, hoping to study mice that are functionally deficient for all three Tec kinases. The results hint the importance of the Tec kinases in T cell development and/or survival. Finally, in order to identify potential transcriptional targets of Itk, we used microarray technology to compare global gene expression profiles of naïve and stimulated Itk-/- versus Itk+/- CD4+ T cells. This analysis provided a short list of differentially expressed genes in Itk-/- versus Itk+/- CD4 T cells, providing a starting point for further studies of Itk in T cell activation. Collectively, these studies clarified the role of Itk in CD28 signaling, revealed some unexpected aspects of Tec family kinases in T cells, and indicated potential targets of Itk-dependent signaling pathways in T cells.
18

Stress Activated Protein Kinase Regulation of Gene Expression in Apoptotic Neurons: A Dissertation

De Zutter, Gerard S. 11 July 2001 (has links)
Summary Basic biological processes require gene expression. Tightly regulated molecules known as transcription factors mediate the expression of genes in development and disease. Signal transduction pathways, which respond to environmental cues or stressors are major regulators of the transcription factors. Use of macromolecular synthesis inhibitors in models of normal neurodevelopment and neurodegenerative cell death has led to the discovery that gene expression is required for these processes to occur (Martin et. al.,(1988), J Cell Biol 106p829). To date, however, the identities of very few of the genes required in these events have been revealed. Hence, the activation or requirement of specific signaling pathways leading to the expression of known apoptotic genes is not well established. Utilizing the neurothrophic factor deprivation and neurotoxin models of programmed cell death we address these gaps in our understanding of the molecular mechanism of apoptosis as it occurs in neuronal cell death. Nerve growth factor (NGF) withdrawal from PC12 cells leads to the activation of p38 and apoptosis. The functional significance of 38 activation in this paradigm of cell death is not known. To increase our understanding of apoptosis I examined the requirement for p38 activity in pro-apoptotic gene expression in PC12 cells. I performed a subtractive hybridization that led to the identification of the monoamine oxidase (MAG) gene as induced in response to NGF withdrawal. Using the p38 inhibitor PD169316 I showed that the NGF withdrawal stimulated induction of the MAG gene and apoptosis is blocked by inhibition of the p38 MAP kinase pathway. I also determined that the MAG inhibitor clorgyline blocked cell death indicating that MAG activity contributes to the cell death caused by NGF withdrawal. Together, these data indicate that the p38 MAP kinase pathway targets the MAG gene in response to apoptotic stimuli. To study the requirement for the JNK signaling pathway in neurodegeneration I stimulated primary cortical neurons with the neurotoxin arsenite. Arsenite treatment of primary neurons leads to both JNK and p38 activation and subsequently apoptosis. Utilizing transgenic mice lacking the JNK3 gene I demonstrated that JNK3 specifically contributes to the effects of arsenite in these cells. Ribonuclease protection assays were used to identify Fas ligand as a molecule whose arsenite-induced expression is dependent on the JNK3 signal transduction pathway. Furthermore, I have shown that neurons deficient in signaling mediated by the receptor for Fas ligand are resistant to cell death due to arsenite treatment. These results in total have established that the JNK3 mediated expression of Fas ligand contributes to the arsenite induced death of cortical neurons. In summary, the work presented in these studies identifies the JNK and p38 MAP kinase signal transduction pathways as mediators of apoptosis in neuronal cells. Importantly, I have provided evidence that these stress activated pathways are responsible for the expression of specific genes in apoptotic neuronal cells.
19

The Structure, Function, and Regulation of Insulin-like Growth factor II/Mannose 6-phosphate Receptor Forms: a Thesis

Clairmont, Kevin B. 01 October 1990 (has links)
In mammals a single receptor protein binds both insulin-like growth factor II (IGF-II) and mannose 6-phosphate (Man 6-P) containing ligands, most notably lysosomal enzymes. However, in chick embryo fibroblasts IGF-II binds predominantly to a type 1 IGF receptor, and no IGF-II/Man 6-P receptor has been identified in this species. In order to determine if chickens possess an IGF-II/Man 6-P receptor, an affinity resin (pentamannosyl 6-phosphate (PMP) Sepharose) was used to purify receptors from chicken membrane extracts by their ability to bind mannose 6-phosphate. Then 125I-IGF-II was used to evaluate their ability to bind IGF-II. These experiments demonstrate that nonmammalian Man 6-P receptors lack the ability to bind IGF-II, suggesting that the ability to bind IGF-II has been gained recently in evolution by the mammalian Man 6-P receptor. The second area of study involves the serum form of the IGF-II/Man 6-P receptor. This receptor had been detected in the serum of a number of mammalian species, yet its structure, function, regulation, and origin were unknown. Initial studies, done with Dr. R. G. MacDonald, showed that the serum receptor is truncated such that the C-terminal cytoplasmic domain of the cellular receptor is removed. These studies also demonstrate a regulation of serum receptor levels with age, similar to that seen for the cellular receptor, and that the serum form of the receptor existed in several forms which appeared intact under nonreducing conditions, but as multiple proteolytic products upon reduction. Finally, these studies demonstrated that both the cellular and serum IGF-II/Man 6-P receptors are capable of binding IGF-II and Man 6-P simultaneously. In studies on the serum form of the IGF-II/Man 6-P receptor that I have conducted independently, the regulation of the serum IGF-II/Man 6-P and transferrin receptors by insulin has been demonstrated. In these studies, insulin injected into rats subcutaneously resulted in a time and dose dependent increase in serum receptor levels. Finally, to investigate the relationship of the serum IGF- II/Man 6-P receptor to the cellular form of the receptor, pulse chase experiments were performed. These experiments demonstrate that the soluble (serum form released into the medium) receptor is a major degradation product of the cellular receptor. Furthermore, the lack of detectable amounts of the lower Mr soluble receptor intracellularly and the parallel relationship of cell surface and soluble receptor suggest that the proteolysis is occurring from the cell surface. Finally, a number of experiments suggest that the degradation rate depends upon the conformation state of the receptor: binding of IGF-II or Man 6-P makes the receptor more susceptible to proteolysis while the presence of lysosomal enzymes prevents receptor proteolysis. In summary, the serum form of the IGF-II receptor is a proteolytic product of the cellular form of the receptor. The rate of release depends upon the number of receptors at the cell surface and the binding state of the receptor. In circulation, the receptor retains the ability to bind both types of ligands, it thus may serve as an IGF binding protein and/or a lysosomal enzyme binding protein. These results suggest a model whereby the cellular receptor is proteolytically cleaved by a plasma membrane protease to produce a short membrane anchored fragment and the serum receptor. In vivo this pathway serves as the major degradative pathway of the IGF-II/Man 6-P receptor, with the serum form being cleared from circulation by further degradation and reuptake.
20

Studies on the Mechanism of Deoxycytidylate Hydroxymethylase from Bacteriophage T4: A Dissertation

Graves, Karen Lorraine 01 June 1994 (has links)
Deoxycytidylate (dCMP) hydroxymethylase (CH) catalyzes the formation of 5-hydroxymethyl-dCMP (Hm5CMP) from dCMP and methylene tetrahydrofolate (CH2THF), analogous to the reaction between dUMP and CH2THF catalyzed by thymidylate synthase (TS), an enzyme of known structure. The amino acid sequence identity between invariant TS residues and CH is at least 50%. Most of the residues which contact the dUMP and CH2THF in TS are conserved in CH. It is hypothesized that CH is homologous to TS in both structure and mechanism. The project described in this thesis tests this hypothesis. In-vitro studies on catalysis by CH variants. The roles of three residues in catalysis by CH have been tested using site-directed mutagenesis. Conversion of Cys148 to Asp, Gly or Ser decreases CH activity at least 105 fold, consistent with a nucleophilic role for Cys148 (analogous to the catalytic Cys in TS). In crystalline TS, hydrogen bonds connect O4 and N3 of bound dUMP to the side chain of an Asn; the corresponding CH residue is Asp179. Conversion of Asp179 in CH to Asn reduces kcat/KM for dCMP by 104 fold and increases kcat/KM for dUMP 60 fold, changing the nucleotide specificity of the enzyme. Other studies have shown that the specificity of TS was changed from dUMP to dCMP by conversion of the appropriate Asn to Asp. Based on the crystal structure of TS, a Glu residue (also conserved in CH) is proposed to catalyze formation of the N5 iminium ion methylene donor by protonation of N10 of CH2THF. In CH and TS, overall turnover and tritium exchange are tightly coupled. Replacement of Glu60 in CH or Glu58 in TS uncouples these catalytic steps. Conversion the Glu60/58 to Gln or Asp results in a 5-50 fold decrease in the ability to catalyze tritium exchange, consistent with an inability to catalyze formation of the N5 iminium ion, but also results in a 104-105 decrease in product formation. This suggests that Glu60/58is also involved in a step in catalysis after nucleotide and folate binding and proton removal from carbon 5 of the nucleotide. Isotope effect studies. The observed value of the α-secondary tritium inverse equilibrium isotope effect (EIE = 0.8) on formation of the complex between FdUMP, CH2THF and both wild-type CH and CH(D179N) indicates that carbon 6 of FdUMP is sp3 hybridized (tetrahedral) in the ternary complex. This is consistent with the hypothesis that that carbon 6 is bonded to Cys148 in the complex. Removal of Cys148in CH prevents complex formation with FdUMP. Lack of an observed α-secondary tritium kinetic isotope effect (KIE) for position 6 of dCMP for both enzymes suggests that the intrinsic KIE is masked by other rate-limiting steps or that rehybridization follows the first irreversible step. An observed KIE on carbon 6 of dUMP by CH(D179N) suggests the rate-limiting steps for the two nucleotide substrates is different. In-vivo studies catalysis by CH variants. In order to prevent recombination between CH deficient T4 phage and plasmid borne copies of CH variants, the gene coding for CH, gene 42, was deleted from the T4 chromosome. The T4Δ42 phage requires wild-type CH expressed from a plasmid to kill their host cell. CH variants C148G, D179N, E60Q, and E60D, all which exhibit at least 2000 fold lower activity in vitro, do not complement the T4Δ42 phage in vivo. Interchanging the functional domains of CH and TS. It is proposed that shortening the C-terminal loop seen in the structure of TS changes the solvent structure of the CH active-site such that it becomes more hydrated. Differences in the solvent structure of the active-site may account for differences in the catalytic specificity between CH and TS, respectively, hydration versus reduction. In order to test the hypothesis that these catalytic differences between TS and CH lie within the C-terminal portion of the enzyme, the N-terminus of the CH(D179N) variant was fused to the C-terminus of the wild-type TS to create a chimeric CH/TS enzyme. The chimeric enzyme was predicted to have specificity for dUMP and a active-site solvent structure similar to that for wild-type TS. However, the resulting protein cannot be overproduced to significant levels and does not have any detectable TS activity in vivo.

Page generated in 0.0815 seconds