• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targeted Gene Repression Technologies for Regenerative Medicine, Genomics, and Gene Therapy

Thakore, Pratiksha Ishwarsinh January 2016 (has links)
<p>Gene regulation is a complex and tightly controlled process that defines cell function in physiological and abnormal states. Programmable gene repression technologies enable loss-of-function studies for dissecting gene regulation mechanisms and represent an exciting avenue for gene therapy. Established and recently developed methods now exist to modulate gene sequence, epigenetic marks, transcriptional activity, and post-transcriptional processes, providing unprecedented genetic control over cell phenotype. Our objective was to apply and develop targeted repression technologies for regenerative medicine, genomics, and gene therapy applications. We used RNA interference to control cell cycle regulation in myogenic differentiation and enhance the proliferative capacity of tissue engineered cartilage constructs. These studies demonstrate how modulation of a single gene can be used to guide cell differentiation for regenerative medicine strategies. RNA-guided gene regulation with the CRISPR/Cas9 system has rapidly expanded the targeted repression repertoire from silencing single protein-coding genes to modulation of genes, promoters, and other distal regulatory elements. In order to facilitate its adaptation for basic research and translational applications, we demonstrated the high degree of specificity for gene targeting, gene silencing, and chromatin modification possible with Cas9 repressors. The specificity and effectiveness of RNA-guided transcriptional repressors for silencing endogenous genes are promising characteristics for mechanistic studies of gene regulation and cell phenotype. Furthermore, our results support the use of Cas9-based repressors as a platform for novel gene therapy strategies. We developed an in vivo AAV-based gene repression system for silencing endogenous genes in a mouse model. Together, these studies demonstrate the utility of gene repression tools for guiding cell phenotype and the potential of the RNA-guided CRISPR/Cas9 platform for applications such as causal studies of gene regulatory mechanisms and gene therapy.</p> / Dissertation
2

Développement d’approches de modifications ciblées du méthylome dans les cellules mammifères / Development of targeted methylome modifications in mammal cells

Argüeso Lleida, Andrea 19 September 2018 (has links)
La méthylation de l’ADN est une modification épigénétique sur les cytosines des dinucléotides CpG catalysée par les enzymes DNMT. Les cellules cancéreuses présentent des hyperméthylations aberrantes sur les promoteurs de gènes dits suppresseurs de tumeurs, ce qui contribue à leur répression transcriptionnelle et favorise la progression tumorale. De par sa nature réversible, la méthylation de l’ADN est une cible de choix pour des thérapies épigénétiques ; cependant, les inhibiteurs de DNMT ont une action de déméthylation globale du génome qui conduit à une forte toxicité. Mon travail a consisté à développer des stratégies de déméthylation ciblée sur des régions spécifiques du génome. Premièrement, j’ai validé une stratégie induisant une reprogrammation épigénétique spécifique et durable du gène suppresseur de tumeurs SERPINB5 dans des cellules de cancer du sein. Deuxièmement, j’ai optimisé des stratégies d'édition de l’épigénome comme outil en recherche fondamentale. / DNA methylation takes place on cytosines of CpG dinucleotides in mammals and is catalysed by DNMT enzymes. Cancer cells are characterised by frequent promoter hypermethylation leading to transcriptional repression of tumor suppressor genes and favouring tumor progression. Because of its reversible nature, DNA methylation is a target of choice in epigenetic therapies. However, current DNMT inhibitors act in a global and non-specific manner, leading to side effects and toxicity in normal cells. During my thesis I have developed strategies to perform targeted demethylation in specific regions of the genome without affecting global methylation. First, I have validated a strategy inducing the specific and durable epigenetic reprogramming of the tumor suppressor gene SERPINB5 in a breast cancer cell line, which can pave the way to further biomedical research. Second, I have optimised epigenome editing strategies as a regular tool in basic research.
3

Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders: Review Article

Bölicke, Nora, Albert, Mareike 22 February 2024 (has links)
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.

Page generated in 0.0976 seconds