• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 451
  • 55
  • 49
  • 21
  • 21
  • 18
  • 13
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 748
  • 360
  • 358
  • 130
  • 118
  • 113
  • 112
  • 110
  • 102
  • 100
  • 98
  • 95
  • 93
  • 79
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Molecular beam epitaxial growth of rare-earth compounds for semimetal/semiconductor heterostructure optical devices

Crook, Adam Michael 12 July 2012 (has links)
Heterostructures of materials with dramatically different properties are exciting for a variety of devices. In particular, the epitaxial integration of metals with semiconductors is promising for low-loss tunnel junctions, embedded Ohmic contacts, high-conductivity spreading layers, as well as optical devices based on the surface plasmons at metal/semiconductor interfaces. This thesis investigates the structural, electrical, and optical properties of compound (III-V) semiconductors employing rare-earth monopnictide (RE-V) nanostructures. Tunnel junctions employing RE-V nanoparticles are developed to enhance current optical devices, and the epitaxial incorporation of RE-V films is discussed for embedded electrical and plasmonic devices. Leveraging the favorable band alignments of RE-V materials in GaAs and GaSb semiconductors, nanoparticle-enhanced tunnel junctions are investigated for applications of wide-bandgap tunnel junctions and lightly-doped tunnel junctions in optical devices. Through optimization of the growth space, ErAs nanoparticle-enhanced GaAs tunnel junctions exhibit conductivity similar to the best reports on the material system. Additionally, GaSb-based tunnel junctions are developed with low p-type doping that could reduce optical loss in the cladding of a 4 μm laser by ~75%. These tunnel junctions have several advantages over competing approaches, including improved thermal stability, precise control over nanoparticle location, and incorporation of a manifold of states at the tunnel junction interface. Investigating the integration of RE-V nanostructures into optical devices revealed important details of the RE-V growth, allowing for quantum wells to be grown within 15nm of an ErAs nanoparticle layer with minimal degradation (i.e. 95% of the peak photoluminescence intensity). This investigation into the MBE growth of ErAs provides the foundation for enhancing optical devices with RE-V nanostructures. Additionally, the improved understanding of ErAs growth leads to development of a method to grow full films of RE-V embedded in III-V materials. The growth method overcomes the mismatch in rotational symmetry of RE-V and III-V materials by seeding film growth with epitaxial nanoparticles, and growing the film through a thin III-V spacer. The growth of RE-V films is promising for both embedded electrical devices as well as a potential path towards realization of plasmonic devices with epitaxially integrated metallic films. / text
472

Rare-earth monopnictide alloys for tunable, epitaxial metals

Krivoy, Erica Michelle 26 September 2013 (has links)
A variety of benefits motivate the development of epitaxial metals, among which include the ability to design fully integrated layer structures where metallic films and nanostructures can be embedded into the cores of optoelectronic devices. Applications include high-performance tunnel-junctions, epitaxial transparent Ohmic contacts, photomixer material, and thermoelectrics. Additionally, the integration of metallic nanostructures and films into optoelectronic devices has shown potential for improving device performance and functionality through sub-wavelength confinement of plasmonic modes and enhancement of light/matter interactions. The rare-earth monopnictide (RE-V) material system can be integrated epitaxially with conventional zincblende III-V substrates under normal growth conditions, resulting in high-quality, thermodynamically stable interfaces. The RE-V semimetals span a range of optical, electrical, and structural properties, making them ideal for integration into III-V-based optoelectronic devices and applications. In this dissertation, high-quality epitaxial LuAs, LaAs and La(x)Lu(1-x)As films and nanostructures were grown and characterized for their structural, electrical, optical, and plasmonic properties. Through a sweep of alloy film compositions of the RE-V alloy material La(x)Lu(1-x)As, the ability to produce tunable epitaxial metals was demonstrated, with a range of peak transmission spectra from near- to mid-infrared wavelengths, plasmonic response in the mid-infrared, moderate resistivity, and lattice-matching potential to many relevant III-V substrates. Additionally, there is a great deal of interest in developing techniques to produce optoelectronic devices that are not restricted by substrate lattice constant. Many epitaxial approaches have been tried, with moderate success; however, growing low defect-density heteroepitaxial materials with differing crystal structures and highly-mismatched lattice parameters is extremely challenging, and such structures suffer from poor thermal properties and reliability issues. A general approach is needed for thin metamorphic buffer layers with minimal threading dislocations that simultaneously have low thermal resistance for effective heat-sinking and device reliability. An investigation was conducted into the use of RE-V nanostructure superlattices towards the reduction of dislocation density in highly-mismatched III-V systems. / text
473

Nano-epitaxy modeling and design: from atomistic simulations to continuum methods

Ye, Wei 13 January 2014 (has links)
The dissertation starts from the understanding of dislocation dissipation mechanism due to the image force acting on the dislocation. This work implements a screw dislocation in solids with free surfaces by a novel finite element model, and then image forces of dislocations embedded in various shaped GaN nanorods are calculated. As surface stress could dramatically influence the behavior of nanostructures, this work has developed a novel analytical framework to solve the stress field of solids with dislocations and surface stress. It is successfully implemented in this framework for the case of isotropic circular nanowires (2D) and the analytical result of the image force has been derived afterwards. Based on the finite element analysis and the analytical framework, this work has a semi-analytical solution to the image force of isotropic nanorods (3D) with surface stress. The influences of the geometrical parameter and surface stress are illustrated and compared with the original finite element result. In continuation, this work has extended the semi-analytical approach to the case of anisotropic GaN nanorods. It is used to analyze image forces on different dislocations in GaN nanorods oriented along polar (c-axis) and non-polar (a, m-axis) directions. This work could contribute to a wide range of nanostructure design and fabrication for dislocation-free devices.
474

Fundamental study of growth of (Zn,Cd)Se on GaAs (211)B from hetero-interface to nanostructures

Telfer, Samantha Anne January 2000 (has links)
No description available.
475

MBE growth and characterisation of ZnSe-based II-VI semiconductors

O'Donnell, Cormac Brendan January 2000 (has links)
No description available.
476

Epitaxial graphene films on SiC: growth, characterization, and devices

Li, Xuebin 13 May 2008 (has links)
Graphene is a single sheet of graphite. While bulk graphite is semimetal, graphene is a zero bandgap semiconductor. Band structure calculations show graphene has a linear energy dispersion relation in the low energy region close to the Dirac points where the conduction band and the valence band touch. Carriers in graphene are described as massless Dirac fermions in contrast to massive carriers in normal metals and semiconductors that obey a parabolic energy dispersion relation. The uniqueness of graphene band structure indicates its peculiar electronic transport properties. In this thesis work, single- and multi-layer graphene films epitaxially grow on either the Si face or the C face of SiC substrates in a homemade induction vacuum chamber by thermal decomposition of SiC at high temperatures. The surface morphology and crystal structure of epitaxial graphene are studied with surface analysis tools. The transport properties of epitaxial graphene are studied by magnetotransport experiments. An epitaxial graphene film turns out to be a multilayered graphene because carriers in epitaxial graphene act as those in single layer graphene. Top gated and side gated epitaxial graphene field effect transistors (FETs) have also been successfully fabricated. These systematic studies unambiguously demonstrate the high quality of epitaxial graphene and the great potential of epitaxial graphene for electronic applications
477

Atomic scale properties of epitaxial graphene grown on sic(0001)

Rutter, Gregory Michael 17 November 2008 (has links)
Graphene, a honeycomb lattice of sp2-bonded carbon atoms, has received considerable attention in the scientific community due to its unique electronic properties. Distinct symmetries of the graphene wave functions lead to unusual quantum properties, such as a unique half-integer quantum Hall effect. As an added consequence of these symmetries, back-scattering in graphene is strongly prohibited leading to long coherence lengths of carriers. These charge carriers at low energy exhibit linear energy-momentum dispersion, much like neutrinos. Thus, carriers in graphene can be described as massless Dirac fermions. Graphene grown epitaxially on semiconducting substrates offers the possibility of large-scale production and deterministic patterning of graphene for nanoelectronics. In this work, epitaxial graphene is created on SiC(0001) by annealing in vacuum. Sequential scanning tunneling microscopy (STM) and spectroscopy (STS) are performed in ultrahigh vacuum at a temperature of 4.2 K and 300 K. These atomic-scale studies address the growth, interfacial properties, stacking order, and quasiparticle coherence in epitaxial graphene. STM topographic images show the atomic structure of successive graphene layers on the SiC substrate, as well as the character of defects and adatoms within and below the graphene plane. STS differential conductance (dI/dV) maps provide spatially and energy resolved snapshots of the local density of states. Such maps clearly show that scattering from atomic defects in graphene gives rise to energy-dependent standing wave patterns. We derive the carrier energy dispersion of epitaxial graphene from these data sets by quantifying the dominant wave vectors of the standing waves for each tunneling bias.
478

Defects in silicon-germanium strained epitaxial layers.

Dynna, Mark. Weatherly, G.C. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1993. / Source: Dissertation Abstracts International, Volume: 55-06, Section: B, page: 2345. Adviser: G. C. Weatherly.
479

Analise microestrutural de telureto de chumbo obtido por crescimento epitaxial

HWANG, MIRIAM K. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:29Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:27Z (GMT). No. of bitstreams: 1 06872.pdf: 4167574 bytes, checksum: 52f6a850bb9e5261861d1ba84fb83a28 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
480

Optimisation, fabrication et caractérisation d’un capteur de gaz à base d’hétérostructure AlGaN/GaN HEMT pour des applications automobiles / Optimization, fabrication and characterization of a gas sensor based HEMTs AlGaN/GaN heterostructure for automotive applications

Halfaya, Yacine 22 November 2016 (has links)
Le travail de la thèse s’articule sur le développement d’un nouveau type de capteurs de gaz à base des matériaux semi-conducteurs III-Nitrure (Les nitrures de gallium). Ces matériaux présentent de nombreux avantages qui pourraient être utilisées pour concevoir des capteurs NOx sensibles et sélectifs pour le contrôle des pollutions émises par la ligne d’échappement Diesel. Afin de limiter et déduire les gaz polluants émis par les moteurs à explosion en générale et les moteurs Diesel en particuliers (NO, NO2, NH3, CO, …), différentes normes européennes ont été établies. Pour respecter ces normes, plusieurs modifications sur les moteurs et les lignes d’échappement des véhicules ont été effectuées (filtres à particules, catalyseurs, capteurs NOx, …). Les capteurs NOx utilisés actuellement sont à base d’électrolyte solide. Ils sont basés dans leur fonctionnement sur la mesure de la concentration d’oxygène présente dans le gaz d’échappement qui permet de son tour l’estimation de la concentration totale des gaz NOx (mesure indirecte). Ces capteurs ne détectent pas le NH3 à la sortie de la ligne d’échappement, et ne donnent pas une information précise sur le rapport entre NO et NO2 (manque de sélectivité) qui est un facteur important pour le bon fonctionnement de catalyseur sélectif SCR (amélioration de rendement) ; d’où la nécessité d’un capteur de gaz plus performant et en particulier sélectif afin d’améliorer les systèmes de contrôle, de post-traitement et de diagnostic. Notre approche consiste à utiliser un transistor HEMT (High Electron Mobility Transistor) à gaz bidimensionnel d’électrons à base de nitrure de Gallium avec l’association d’une couche fonctionnelle à la place de la grille. L’interaction des molécules de gaz avec cette couche fonctionnelle donne une signature (variation de signal de sortie) spécifique pour chaque type de gaz qui aide à l’amélioration de la sélectivité. Le projet contient deux parties : l’optimisation de la structure choisie et l’optimisation de la couche fonctionnelle afin d’obtenir une détection sélective entre les différents gaz polluants. Cette technologie est intéressante pour développer des capteurs de gaz grâce aux possibilités de détecter des faibles variations de tensions et aux possibilités de fonctionnement dans des environnements sévères. La thèse de doctorat s’inscrit dans le cadre de l’OpenLab materials and processes en collaboration entre le laboratoire Georgia-Tech lorraine et l’entreprise Peugeot-Citroën PSA / The work of the thesis focuses on the development of a new type of gas sensors based III-Nitride semiconductor materials (gallium nitrides). These materials have many advantages that could be used to develop sensitive and selective NOx sensors for the control of pollution emitted by diesel exhaust line. To limit the polluting gases emitted by internal combustion engines in general and diesel in particular (NO, NO2, NH3, CO, ...), different European standards have been established. To meet these standards, anti-pollution systems (consisting of particle filters, catalysts, NOx sensors, ... etc) are used. NOx sensors currently used in automobiles are based on a solid electrolyte. Their operation is based on the measurement of the oxygen concentration. This enables an estimate of the total concentration of NOx gas (indirect measurement) after filtering NOx from O2 and decomposing NOx into O2. These sensors do not detect NH3 at the outlet of the exhaust line, and do not give accurate information on the relationship between NO and NO2 (lack of selectivity) which is important factor for an optimal functioning of selective catalyst (SCR performance improvement). Hence there exists a need for a more efficient and selective in particular gas sensor to improve the control systems, post-treatment and diagnosis. Our approach is to use a HEMT (High Electron Mobility Transistor) transistor based on gallium nitride with a combination of a functional layer instead of the gate. The interaction of the gas molecules with the functional layer gives a signature (output signal variation) specific for each type of gas that helps to improve the selectivity. The project contains two parts: the optimization of the chosen structure and the optimization of the functional layer in order to achieve selective detection between various gaseous pollutants. This technology is interesting for development of gas sensors through the possibility of detection low voltage variations and the possibility of operating in harsh environments. The thesis is part of OpenLab "Materials and Processes" in a collaboration between Georgia Tech-CNRS laboratory and the PSA Peugeot-Citroen Group

Page generated in 0.0549 seconds