• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De solutione problematum diophanteorum per n?meros integros : o primeiro trabalho de Euler sobre equa??es diofantinas

Dantas, Joice de Andrade 07 November 2011 (has links)
Made available in DSpace on 2014-12-17T14:36:38Z (GMT). No. of bitstreams: 1 JoiceAD_DISSERT.pdf: 4224825 bytes, checksum: d7ade3189d2bc3a42ecfc46d7a810c45 (MD5) Previous issue date: 2011-11-07 / The present dissertation analyses Leonhard Euler?s early mathematical work as Diophantine Equations, De solutione problematum diophanteorum per n?meros ?ntegros (On the solution of Diophantine problems in integers). It was published in 1738, although it had been presented to the St Petersburg Academy of Science five years earlier. Euler solves the problem of making the general second degree expression a perfect square, i.e., he seeks the whole number solutions to the equation ax2+bx+c = y2. For this purpose, he shows how to generate new solutions from those already obtained. Accordingly, he makes a succession of substitutions equating terms and eliminating variables until the problem reduces to finding the solution of the Pell Equation. Euler erroneously assigns this type of equation to Pell. He also makes a number of restrictions to the equation ax2+bx+c = y and works on several subthemes, from incomplete equations to polygonal numbers / Nesta pesquisa analisamos historicamente e matematicamente o primeiro trabalho de Leonhard Euler sobre Equa??es Diofantinas o De solutione problematum diophanteorum per n?meros integros ( Sobre a solu??o de problemas diofantinos por n?meros inteiros ). Foi publicado em 1738, embora apresentado ? Academia de S?o Petersburgo cinco anos antes. No texto, Euler trata do problema de fazer com que a express?o generalizada do segundo grau seja igual a um quadrado perfeito, isto ?, procura solu??es no conjunto dos n?meros inteiros para equa??o ax2+bx+c = y2. Para tanto, Euler mostra como descobrir mais solu??es depois que uma primeira ? encontrada, fazendo uma s?rie de substitui??es combinando termos e eliminando vari?veis, at? que o trabalho se resume a encontrar a solu??o para ,q=ⱱap?+1 uma equa??o de Pell. Este trabalho ? o primeiro tamb?m em que Euler atribui erroneamente esse tipo de equa??o a Pell. Euler faz tamb?m, uma s?rie de restri??es para a equa??o ax2+bx+c = y2 e trabalha com diversos subcasos, que v?o desde equa??es incompletas at? o trabalho com n?meros poligonais

Page generated in 0.0815 seconds