• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Existência de soluções para equações integro-diferenciais neutras / Existence results for neutral integro-differential equations

Santos, José Paulo Carvalho dos 29 May 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas, semi-clássicas e clássicas, conceitos introduzidos no texto para uma classe de sistemas integro-diferenciais do tipo neutro com retardamento não limitado modelados na forma d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, onde A é um operador linear fechado densamente definido em um espaço de Banach X, cada B(t) : D(B(t)) ⊂ X → X, t ≥ 0 é um operador linear fechado, a história xt : (-∞, 0] → X, xt(θ) = x(t + θ), pertence a um espaço de fase abstrato B definido axiomaticamente e D, F, g, G : [0, a] × B → X são funções apropriadas. Para obter alguns de nossos resultados, estudamos a existência e propriedades qualitativas de uma família resolvente de operadores lineares limitados (R(t))t≥0, para o sistema integro-diferencial d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, onde (N(t)) t≥0 é uma família de operadores lineares limitados em X. Mencionamos que este tipo de sistemas aparece no estudo da condução de calor em materiais com memória amortecida. / In this work we study the existence of mild, semi-classical and classical solution, concepts introduced be later for a class of abstract neutral functional integrodifferential systems with unbounded delay in the form d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, where A : D(A) ⊂ X → X is a closed linear densely defined operator in a Banach space X, each B(t) : D(B(t)) ⊂ X → X, is a closed linear operator, the history xt : (-∞, 0] → X, xt(θ) = x(t + θ), belongs to some abstract phase space B defined axiomatically and D, F, g :[0, a] × B → X are appropriate functions. To establish some of our results, we studied the existence and qualitative properties of a resolvent of bounded linear operators (R(t))t≥0, for a system in the form d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, where (N(t)) t≥0 is a family of bounded linear operators on X. We mention that this class of system arise in the study of heat conduction in material with fading memory.
2

Existência de soluções para equações integro-diferenciais neutras / Existence results for neutral integro-differential equations

José Paulo Carvalho dos Santos 29 May 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas, semi-clássicas e clássicas, conceitos introduzidos no texto para uma classe de sistemas integro-diferenciais do tipo neutro com retardamento não limitado modelados na forma d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, onde A é um operador linear fechado densamente definido em um espaço de Banach X, cada B(t) : D(B(t)) ⊂ X → X, t ≥ 0 é um operador linear fechado, a história xt : (-∞, 0] → X, xt(θ) = x(t + θ), pertence a um espaço de fase abstrato B definido axiomaticamente e D, F, g, G : [0, a] × B → X são funções apropriadas. Para obter alguns de nossos resultados, estudamos a existência e propriedades qualitativas de uma família resolvente de operadores lineares limitados (R(t))t≥0, para o sistema integro-diferencial d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, onde (N(t)) t≥0 é uma família de operadores lineares limitados em X. Mencionamos que este tipo de sistemas aparece no estudo da condução de calor em materiais com memória amortecida. / In this work we study the existence of mild, semi-classical and classical solution, concepts introduced be later for a class of abstract neutral functional integrodifferential systems with unbounded delay in the form d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, where A : D(A) ⊂ X → X is a closed linear densely defined operator in a Banach space X, each B(t) : D(B(t)) ⊂ X → X, is a closed linear operator, the history xt : (-∞, 0] → X, xt(θ) = x(t + θ), belongs to some abstract phase space B defined axiomatically and D, F, g :[0, a] × B → X are appropriate functions. To establish some of our results, we studied the existence and qualitative properties of a resolvent of bounded linear operators (R(t))t≥0, for a system in the form d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, where (N(t)) t≥0 is a family of bounded linear operators on X. We mention that this class of system arise in the study of heat conduction in material with fading memory.
3

Propriedades das soluções de equações diferenciais em medida / Properties of solutions of measure differential equations

Andrade, Fernando Gomes de 01 February 2019 (has links)
Equações diferenciais funcionais em medida podem ser usadas como ferramentas para o estudo de modelos físicos mais próximos da realidade, por exemplo, modelos com fenômeno de \"jump\" e constituem um ramo relativamente novo de equações diferenciais. Embora esse campo tenha se desenvolvido nos últimos anos, a teoria sobre equações diferenciais funcionais em medida é escassa, com algumas classes de equações ainda não pesquisadas. Neste trabalho, vamos explorar as equações diferenciais funcionais neutras em medida com retardo infinito. Usando técnicas conhecidas na literatura, obtemos propriedades qualitativas para sua solução, como existência, unicidade e dependência contínua com relação as condições iniciais. Além disso, estudamos a controlabilidade de um sistema descrito por este tipo de equação. / Measure differential equations is a branch of differential equations area recently discovered that can be used as a tool to study physical models closer to the reality, for example, models with the phenomenon of jump. Although this field has been developed in the recent years, the theory of measure functional differential equations is still scarce, and some classes of these equations have not been described yet. Here, we will explore the neutral measure functional differential equations with infinite delay. Using techniques known in the literature, we obtain qualitative properties of their solutions, such as existence, uniqueness and continuous dependence. In addition, we study controllability for systems described by this type of equation.

Page generated in 0.041 seconds