Spelling suggestions: "subject:"equationsbased tool"" "subject:"equationbased tool""
1 |
Concise Modeling of Humanoid Dynamics / Kortfattad Modellering av HumanoiddynamikJoachimbauer, Florian January 2017 (has links)
Simulation of mechanical systems like walking robots, is an essential part in developingnew and more applicable solutions in robotics. The increasing complexity of methodsand technologies is a key challenge for common languages. That problem creates a needfor flexible and scalable languages. The thesis concludes that an equation-based toolusing the Euler-Lagrange can simplify the process cycle of modeling and simulation. Itcan minimize the development effort, if the tool supports derivatives. Regretfully, it isnot common to use equation-based tools with this ability for simulation of humanoidrobots.The research in this thesis illustrates the comparison of equation-based tools to commonused tools. The implementation uses the Euler-Lagrange method to model andsimulate nonlinear mechanical systems. The focus of this work is the comparison ofdifferent tools, respectively the development of a humanoid robot in a stepwise mannerbased on the principle of passive walking. Additionally, each developed model has givenan informal argument to its stability. To prove the correctness of the thesis statementthe equation-based tool called Acumen is evaluated in contrast to a common used tool,MATLAB.Based on the achieved results, it can be concluded that the use of equation-based toolsusing Euler-Lagrange formalism is convenient and scalable for humanoid robots. Additionally,the development process is significantly simplified by the advantages of suchtools. Due to the experimental nature of Acumen further research could investigatethe possibilities for different mechanical systems as well as other techniques.
|
Page generated in 0.1074 seconds