Spelling suggestions: "subject:"massive walking"" "subject:"assive walking""
1 |
Dynamics and stability of passive dynamic biped walking using an advanced mathematical modelKoop, Derek 20 September 2012 (has links)
Passive dynamic walking is a manner of walking developed, partially or in whole, by the energy provided by gravity. Studying passive dynamic walking provides insight into human walking and is an invaluable tool for designing energy efficient biped robots. The objective of this research was to develop a new mathematical model of passive dynamic walking that modeled the ground reaction forces. A physical passive walker was built to validate the proposed mathematical model. The stability of the gait was analyzed using the proposed model. A novel method was created to determine the stability region of the model. Using the insights gained from the stability analysis, the relation between the angular momentum and the stability of the gait was examined. The proposed model matched the gait of the physical passive walker exceptionally well, both in trend and magnitude. The angular momentum of the passive walker was not found to correlate to the stability of the gait.
|
2 |
Dynamics and stability of passive dynamic biped walking using an advanced mathematical modelKoop, Derek 20 September 2012 (has links)
Passive dynamic walking is a manner of walking developed, partially or in whole, by the energy provided by gravity. Studying passive dynamic walking provides insight into human walking and is an invaluable tool for designing energy efficient biped robots. The objective of this research was to develop a new mathematical model of passive dynamic walking that modeled the ground reaction forces. A physical passive walker was built to validate the proposed mathematical model. The stability of the gait was analyzed using the proposed model. A novel method was created to determine the stability region of the model. Using the insights gained from the stability analysis, the relation between the angular momentum and the stability of the gait was examined. The proposed model matched the gait of the physical passive walker exceptionally well, both in trend and magnitude. The angular momentum of the passive walker was not found to correlate to the stability of the gait.
|
3 |
Concise Modeling of Humanoid Dynamics / Kortfattad Modellering av HumanoiddynamikJoachimbauer, Florian January 2017 (has links)
Simulation of mechanical systems like walking robots, is an essential part in developingnew and more applicable solutions in robotics. The increasing complexity of methodsand technologies is a key challenge for common languages. That problem creates a needfor flexible and scalable languages. The thesis concludes that an equation-based toolusing the Euler-Lagrange can simplify the process cycle of modeling and simulation. Itcan minimize the development effort, if the tool supports derivatives. Regretfully, it isnot common to use equation-based tools with this ability for simulation of humanoidrobots.The research in this thesis illustrates the comparison of equation-based tools to commonused tools. The implementation uses the Euler-Lagrange method to model andsimulate nonlinear mechanical systems. The focus of this work is the comparison ofdifferent tools, respectively the development of a humanoid robot in a stepwise mannerbased on the principle of passive walking. Additionally, each developed model has givenan informal argument to its stability. To prove the correctness of the thesis statementthe equation-based tool called Acumen is evaluated in contrast to a common used tool,MATLAB.Based on the achieved results, it can be concluded that the use of equation-based toolsusing Euler-Lagrange formalism is convenient and scalable for humanoid robots. Additionally,the development process is significantly simplified by the advantages of suchtools. Due to the experimental nature of Acumen further research could investigatethe possibilities for different mechanical systems as well as other techniques.
|
4 |
Recurrent dynamics of nonsmooth systems with application to human gaitPiiroinen, Petri January 2002 (has links)
No description available.
|
5 |
Recurrent dynamics of nonsmooth systems with application to human gaitPiiroinen, Petri January 2002 (has links)
No description available.
|
Page generated in 0.0844 seconds