Spelling suggestions: "subject:"equivalência antropológica"" "subject:"aquivalência antropológica""
1 |
Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2 / On the phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2Peruzzi, Daniela 18 June 2009 (has links)
Um dos principais problemas na teoria qualitativa das equações diferenciais em dimensão dois é apresentar, para uma dada família de sistemas diferenciais, uma classificação topológica dos retratos de fase de todos os sistemas dessa família. A proposta deste trabalho é estudar a técnica utilizada na classificação dos retratos de fase globais de sistemas diferenciais polinomiais da forma \'dx SUP dt\' = P(x,y) \'dy SUP dt = Q(x,y) onde P e Q são polinômios nas variáveis x e y e o máximo entre os graus de P e Q é 2. Para esse fim optamos pelo estudo da referência de Cairó e Llibre [5]. Na presente referência os autores obtém a classificação de todos os retratos de fase globais dos sistemas diferenciais polinomiais que possuem uma integral primeira racional, H, de grau 2. Esse estudo foi dividido em duas etapas. Na primeira, caracterizamos a função H através de seus coeficientes. Na segunda, encontramos todos os retratos de fase globais no disco de Poincaré. Para tais sistemas, existem exatamente 18 retratos de fase no disco de Poincaré, exceto pela reversão do sentido de todas as órbitas ou equivalência topológica / One of the main problems in the qualitative theory of 2-dimensional differential equations is, for a concrete family of differential systems, to describe a topological classification of the phase portraits for all the systems in this family. The purpose of this work is to study a technique used in the classification of global phase portraits of the planar polynomial diferential systems or simply quadratic systems of the form \'dx SUP. dt\' = P(x,y) \'dy SUP. dt\' = Q(x,y) where P and Q are real polynomials in x and y the maximum degree of P and Q is 2. Our basic reference is the paper of Cairó and Llibre [5]. In that work the authors give the classification of all global phase portraits of the planar quadratic differential systems having a rational first integral H of degree 2. Our work is divided in two parts. In the first part, we characterize the first integral H through its coeficients. In the second one, we describe all global phase portraits in the Poincaré disk. For such systems, there are exactly 18 different phase portraits in the Poincaré disk, up to a reversal of sense of all orbits or topological equivalence
|
2 |
A conjectura de Zariski para a multiplicidadeCarvalho, Emílio de 24 June 2010 (has links)
Made available in DSpace on 2016-06-02T20:28:25Z (GMT). No. of bitstreams: 1
3184.pdf: 615801 bytes, checksum: 5d8654ee242eff8f78e530be4b12eaf5 (MD5)
Previous issue date: 2010-06-24 / Financiadora de Estudos e Projetos / In his retiring Presidential address to the American Mathematical Society in 1971, Zariski proposed some questions in the Theory of Singularities. One of them concerns the topological invariance of the multiplicity of complex hypersurfaces. In more accurate terms, Zariski asked: if two complex hypersurfaces are homeomorphic as embedded varieties, then are their multiplicities at the origin the same? The multiplicity of a complex hypersurface at the origin is the number of points of intersection of the hypersurface with a generic complex line passing close to the origin, but not through it. The problem still remains unsolved. However, there are some special cases which were answered affirmatively, such as the case of homeomorphic hypersurfaces by a bilipschitz homeomorphism. This work aims at understanding the main results settled for the problem. In the present dissertation, we will make a precise concept of multiplicity of a complex hypersurface and we will give special emphasis to C1-invariance of the multiplicity, bilipschitz invariance and quasihomogeneous hypersurfaces. Besides having great importance by themselves, these cases bring their own interpretations of multiplicity helping us to understand better such an object. / Em seu discurso de saída da presidência da Sociedade Americana de Matemática em 1971, Zariski propôs algumas questões na Teoria de Singularidades. Uma delas diz respeito `a invariância topológica da multiplicidade de hipersuperfícies complexas. Em termos mais precisos, Zariski perguntou: se duas hipersuperfícies complexas são homeomorfas como variedades imersas, então suas multiplicidades na origem são as mesmas? A multiplicidade de uma hipersuperfície complexa na origem é o número de pontos de interseção da hipersuperfície com uma reta complexa genérica passando próximo da origem, mas não por ela. O problema permanece ainda sem solução. Entretanto, existem alguns casos especiais que foram respondidos afirmativamente, tais como o caso de hipersuperfícies homeomorfas por um homeomorfismo bilipschitz. Este trabalho tem por objetivo compreender os principais resultados estabelecidos para o problema. Na presente dissertação, faremos um conceito preciso de multiplicidade de uma hipersuperfície complexa e daremos ênfase especial `a C1-invariância da multiplicidade, `a invariância bilipschitz e `as hipersuperfícies quase homogêneas. Além de terem grande importância por si só, estes casos trazem suas próprias interpretações de multiplicidade, ajudando-nos a compreender melhor tal objeto.
|
3 |
Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2 / On the phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2Daniela Peruzzi 18 June 2009 (has links)
Um dos principais problemas na teoria qualitativa das equações diferenciais em dimensão dois é apresentar, para uma dada família de sistemas diferenciais, uma classificação topológica dos retratos de fase de todos os sistemas dessa família. A proposta deste trabalho é estudar a técnica utilizada na classificação dos retratos de fase globais de sistemas diferenciais polinomiais da forma \'dx SUP dt\' = P(x,y) \'dy SUP dt = Q(x,y) onde P e Q são polinômios nas variáveis x e y e o máximo entre os graus de P e Q é 2. Para esse fim optamos pelo estudo da referência de Cairó e Llibre [5]. Na presente referência os autores obtém a classificação de todos os retratos de fase globais dos sistemas diferenciais polinomiais que possuem uma integral primeira racional, H, de grau 2. Esse estudo foi dividido em duas etapas. Na primeira, caracterizamos a função H através de seus coeficientes. Na segunda, encontramos todos os retratos de fase globais no disco de Poincaré. Para tais sistemas, existem exatamente 18 retratos de fase no disco de Poincaré, exceto pela reversão do sentido de todas as órbitas ou equivalência topológica / One of the main problems in the qualitative theory of 2-dimensional differential equations is, for a concrete family of differential systems, to describe a topological classification of the phase portraits for all the systems in this family. The purpose of this work is to study a technique used in the classification of global phase portraits of the planar polynomial diferential systems or simply quadratic systems of the form \'dx SUP. dt\' = P(x,y) \'dy SUP. dt\' = Q(x,y) where P and Q are real polynomials in x and y the maximum degree of P and Q is 2. Our basic reference is the paper of Cairó and Llibre [5]. In that work the authors give the classification of all global phase portraits of the planar quadratic differential systems having a rational first integral H of degree 2. Our work is divided in two parts. In the first part, we characterize the first integral H through its coeficients. In the second one, we describe all global phase portraits in the Poincaré disk. For such systems, there are exactly 18 different phase portraits in the Poincaré disk, up to a reversal of sense of all orbits or topological equivalence
|
4 |
Formas normais de sistemas forçados / Normal forms of constrained differential systemsHerrera, Yovani Adolfo Villanueva 30 May 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-06-23T19:07:29Z
No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 1975075 bytes, checksum: 4226bb99e3c16dbc26f70e7f7208e2c1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Rejected by Erika Demachki (erikademachki@gmail.com), reason: on 2017-06-29T18:25:12Z (GMT) / Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-06-29T18:25:47Z
No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 2011176 bytes, checksum: 4107b5d00ad34d3b4127265319a99868 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2017-06-29T18:28:16Z (GMT) No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 2011176 bytes, checksum: 4107b5d00ad34d3b4127265319a99868 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-06-29T18:28:16Z (GMT). No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 2011176 bytes, checksum: 4107b5d00ad34d3b4127265319a99868 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-05-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The subject of this work is the theory of normal forms of smooth vector fields of constrained
systems (systems of non-linear differential-algebraic equations). In this study we introduce the
qualitative theory of ordinary differential equations, with topics such as stability, structural stability, bifurcations, limit cycles and catastrophes of differential equations, and the functional
singularity theory. The goal of this work is classify and normalize constrained systems, first of all
from the local point of view, we'll show an idea of the global one and our final objective will be
extend this theory to differenciable manifolds of dimension $n \geq 2$. / O tema deste trabalho é a teoria das formas normais de campos vetoriais suaves de sistemas
forçados (sistemas de equações diferenciais-algébricas não lineares). Neste estudo entram a teoria
qualitativa de equações diferenciais ordinárias, com tópicos como estabilidade, estabilidade
estrutural, bifurcações, ciclos limite e catástrofes de equações diferenciais e a teoria das
singularidades de funções. O objetivo do trabalho é a classificação e normalização dos sistemas
forçados, primeiramente do ponto de vista local, mostraremos uma ideia da análise global e será
nossa finalidade estender esta teoria para variedades diferenciáveis de dimensão $n \geq 2$.
|
Page generated in 0.051 seconds