• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teorema ergódico multiplicativo de oseledets /

Alves, Fabricio Fernando. January 2010 (has links)
Orientador: Vanderlei Minori Horita / Banca: Daniel Smania Brandão / Banca: Ali Messaoudi / Resumo: Este trablaho apresenta os conceitos de Lyapounov e de espaços próprios e fornece um resultado devido a Oseledets, o qual trata da existência desses expoentes (e, consequentemente, dos espaços próprios) do ponto de vista da teoria da medida. A prova do teorema que nós fornecemos foi dada originalmente por Mañe e posteriormente melhorada por Viana. / Abstract: This work presents the concepts of Lyapounov exponents and of proper spaces and provides a result due to Oseledets, wich deals with the existence of these exponents (and consequently, of the proper spaces) from a measure-theoretical point of view. The proof of the theorem which we provide was originally given by Mañe later improved by Viana. / Mestre
2

Bilhares planares/

Andrade, Rodrigo Manoel Dias. January 2012 (has links)
Orientador: Vanderlei Minori Horita / Banca: Roberto Markarian / Banca: Paulo Ricardo da Silva / Resumo: O objetivo principal deste trabalho e estudar a dinâmica de uma partícula pontual no interior de subconjuntos do plano. Tais sistemas são conhecidos na literatura como bilhares. Apresentaremos os principais conceitos desses sistemas e veremos que tais sistemas deixam invariante uma medida de probabilidade, o que nos permite aplicar a Teoria Ergódica ao problema do bilhar / Abstract: The main goal of this work is to study the dynamical behavior of a point-like (dimensionless) particle in the interior of planar regions. Such systems are known in the literature as billiards. We're going to present the principal concepts of those systems and we'll see that such system turns the probability measure invariant, which allows us to apply the Ergodic Theory to billiard problems / Mestre

Page generated in 0.0486 seconds