• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beschreibung des Ermüdungsverhaltens von Asphaltgemischen unter Verwendung von ein- und mehraxialen Zugschwellversuchen / Characterization of the fatigue behaviour of asphalt mixes using uni- and multiaxial tension tests

Weise, Christiane 19 January 2009 (has links) (PDF)
Für die Ermittlung der Ermüdungsfunktion sowie der E-Modul-Funktion sind in den europäischen Normen verschiedene Versuchsarten vorgesehen. In Deutschland werden bisher der Einaxiale Zugschwellversuch und der Spaltzugschwellversuch angewandt. Diese vergleichsweise einfachen Versuche können das Ermüdungsverhalten eines Asphaltgemisches in situ nur mit Einschränkungen (z.B. hinsichtlich des vorherrschenden Spannungszustandes) wiedergeben. Der Triaxialversuch mit Zug-/Druckschwellbelastung kann zur realitätsnahen Untersuchung des Ermüdungsverhaltens (Ermüdungsfunktion in Verbindung mit der E-Modul-Funktion) angewandt werden, da neben der frei wählbaren Zugbeanspruchung zusätzlich beliebige Druckbeanspruchungen normal zur Zugspannung auf den Probekörper aufgegeben werden können. Aufgrund der aufwändigen Versuchsdurchführung findet der Versuch bisher nur in der Forschung Anwendung. Die für die Dissertation ausgewerteten Daten umfassen die Ergebnisse von Einaxialen Zugschwellversuchen, Spaltzugschwellversuchen und Triaxialversuchen mit Zug-/Druckschwellbelastung an insgesamt sechs verschiedenen Asphaltgemischen. Die Einflüsse aus dem Hohlraumgehalt, der Belastungsfrequenz sowie der Mischgutart und -sorte auf das Ermüdungsverhalten konnten herausgearbeitet werden. Weiterhin gelang aus den Ergebnissen aller Versuchsarten die Aufstellung von Ermüdungsflächenfunktionen in Abhängigkeit von Dehnungsanteilen infolge verschiedener Spannungskomponenten (mehraxialer Spannungszustand) unter Berücksichtigung der in den Probekörpern der verschiedenen Ermüdungsversuche auftretenden Spannungskombinationen Zug- zu Druckspannung. Die Gültigkeit der ermittelten Ermüdungsflächenfunktion für andere, über die in den angewendeten Versuchsarten hinausgehende Spannungskombinationen muss mit Hilfe geeigneter (noch zu entwickelnder) Versuche überprüft werden.
2

Einfluss von Mehrfachmodifizierungen auf das Steifigkeits- und Ermüdungsverhalten von Bitumen und Asphaltmischgut

Sorge, Ronny 20 May 2019 (has links)
Mit Beeinflussung der Bindemitteleigenschaften durch verschiedene einzelne oder kombi-nierte Modifikationen steigt die Komplexität, die Materialeigenschaften anzusprechen und zu interpretieren. Mit den konventionellen Untersuchungen zur Klassifizierung der Bindemittel-eigenschaften ist dies nicht möglich. Jedoch bestehen unter anderem Möglichkeiten mit dem Dynamischen Scher-Rheometer (DSR) und dem Dynamischen Spaltzug-Schwellversuch (DSZV), die Eigenschaften dieser komplexen Materialen bei zielgerichteter Anwendung im geeigneten Maße anzusprechen. Ein wesentliches Ziel dieser Arbeit war es, Kenntnisse über die Auswirkungen von Mehrfachmodifizierungen im Bitumen und im Asphaltmischgut zu erlangen. Dabei sollten Methoden zur Untersuchung und Interpretation der rheologischen Eigenschaften überprüft und entwickelt werden. Durch die Möglichkeit, das Steifigkeitsverhalten der Bitumen im gesamten relevanten Temperatur- und Frequenzbereich versuchstechnisch ansprechen zu können, war es über die Korrelation des Steifigkeitsverhalten von Bitumen und Asphalt möglich, aktuelle Modelle für die Entwicklung der Masterkurven erst im Bitumen zu überprüfen und dann auch für das Asphaltmischgut anzuwenden. Dadurch wurden zusätzlich Alternativen aufgezeigt, die Entwicklung der Asphalt-Masterkurven mit Hilfe des DSR zu unterstützen und Ergebnisse zu plausibilisieren. Für das Ermüdungsverhalten wurde ein Vorversuch entwickelt, der es ermöglicht, den für die Ermüdung relevanten Relaxationsbereich als Temperaturbereich festzulegen und zu inter-pretieren. Zudem wurden verschiedene Ermüdungskriterien im Bitumen und Asphaltmischgut angewendet. Dabei wurden die Bindemittel und die Asphaltgemische im ungealterten bis lang-zeitgealterten Zustand untersucht. Das Ermüdungsverhalten aller Variationen wurde außer-dem bei äquivalentem rheologischen Verhalten, mit variierender Gesteinsart sowie nach Vorbelastung und Wasserlagerung untersucht. Zusätzlich wurde mit Hilfe der Rohdaten aus den DSR-Ermüdungsversuchen eine optimierte Methodik entwickelt, um den Hysterese-einfluss auf das Ermüdungsverhalten einzubeziehen. Mit Hilfe der Masterkurven und Blackdiagramme war es möglich, den differenten Einfluss der Modifikationen auf das Steifigkeitsverhalten darzustellen. Dabei konnte unter anderem das Verhalten von Bindemitteln mit reinen Polymernetzwerken aus Elastomeren und Plastomeren von Bindemitteln mit Polymernetzwerken aus einem Elastomer und nichtpolymeren Werk-stoffen abgegrenzt werden. Bei der Untersuchung des Ermüdungsverhaltens konnte gezeigt werden, dass sich der für die Ermüdung relevante Temperaturbereich durch die Modifikationen deutlich verschiebt. Alle modifizierten Varianten zeigten bei der Versuchsdurchführung gemäß der „Arbeitsanleitung zur Bestimmung des Steifigkeits- und Ermüdungsverhaltens von Asphalten mit dem Spaltzug-Schwellversuch als Eingangsgröße in die Dimensionierung“ (AL Sp-Asphalt 09) ein ver-bessertes Ermüdungsverhalten gegenüber der unmodifizierten Variante. Durch die oben beschriebene Variation der Prüfbedingungen und die Variation der Gesteine wurden anschließend deutliche Abweichungen bei den Ergebnissen festgestellt. Dadurch wurde gezeigt, inwiefern äquivalentes rheologisches Verhalten Einfluss auf das Ermüdungsverhalten der Varianten nimmt. Zudem konnte gezeigt werden, welchen Einfluss die Anwesenheit von Wasser in der Grenzfläche sowie die Variation der Gesteinsart und die Alterung des Bindemittels auf das Ermüdungsverhalten haben können. Die Untersuchungen zeigten darüber hinaus, dass die ausgewählten mathematischen Modelle und ein eigenes entwickeltes Modell zur Konstruktion der Masterkurve für die mehrfachmodifizierten Varianten im gealterten und ungealterten Zustand für Bitumen und Asphaltmischgut anwendbar sind.:Inhaltsverzeichnis 1. Einleitung - 10 - 1.1 Motivation - 10 - 1.2 Zielsetzung und Vorgehensweise - 11 - 2. Stand der Wissenschaft und Technik - 13 - 2.1 Mechanisches Verhalten von Bitumen und Asphalt - 13 - 2.1.1 Allgemein - 13 - 2.1.2 Grundlagen der Asphalt- und Bitumenrheologie - 13 - 2.1.3 Rheologische Modelle - 17 - 2.1.4 Zeit-Temperatur-Äquivalenzprinzip - 24 - 2.1.5 Mathematische Modelle - 26 - 2.1.6 Materialkenngrößen und Verhalten bei zyklischer Belastung - 28 - 2.1.7 Beanspruchung von Asphaltbefestigungen - 32 - 2.1.8 Ermüdungsverhalten - 34 - 2.2 Affinität - 41 - 2.2.1 Adhäsionsmodelle - 41 - 2.2.2 Versagensmodelle der Adhäsion - 42 - 2.3 Alterung - 43 - 2.3.1 Verdunstungsalterung - 43 - 2.3.2 Oxidative Alterung - 43 - 2.3.3 Strukturalterung - 44 - 2.4 Einfluss von Additiven und Polymermodifikationen auf die Bindemittel- und Mischguteigenschaften - 44 - 2.4.1 Polymermodifikation - 44 - 2.4.2 Additivierung - 49 - 2.4.3 Zusammenfassung - 54 - 3. Methodik - 55 - 3.1 Versuchsprogramm Bitumen - 55 - 3.1.1 Eingesetzte Materialien - 55 - 3.1.2 Probekörperherstellung und Lagerung - 58 - 3.1.3 Rheologische Untersuchung durch Dynamisches Scher-Rheometer - 59 - 3.2 Versuchsprogramm Asphalt - 75 - 3.2.1 Eingesetzte Materialien - 75 - 3.2.2 Probekörperherstellung und Probekörperkonditionierung - 76 - 3.2.3 Versuchsdurchführung des Spaltzug-Schwellversuchs - 78 - 4. Ergebnisdarstellung und Diskussion - 89 - 4.1 Vorversuche Bitumen - 89 - 4.1.1 Amplitudentests - 89 - 4.1.2 Versuchsrelevanter Temperaturbereich - 94 - 4.1.3 Diskussion - 96 - 4.2 Masterkurven Bitumen - 98 - 4.2.1 Zuverlässigkeit der Modelle - 98 - 4.2.2 Einfluss der Modifikationen - 100 - 4.2.3 Einfluss der Alterung - 107 - 4.2.4 Diskussion - 115 - 4.3 Ermüdungsverhalten Bitumen - 117 - 4.3.1 Einfluss des Ermüdungskriteriums - 117 - 4.3.2 Einfluss der Modifikationen - 118 - 4.3.3 Diskussion - 122 - 4.4 Steifigkeitsverhalten Asphaltmischgut - 123 - 4.4.1 Zuverlässigkeit der Modelle - 123 - 4.4.2 Einfluss der Modifikationen - 127 - 4.4.3 Einfluss der Alterung - 130 - 4.4.4 Einfluss der Gesteinsart - 132 - 4.4.5 Korrelation Steifigkeitsverhalten Bitumen-Asphaltmischgut - 134 - 4.4.6 Diskussion - 135 - 4.5 Ermüdungsverhalten Asphaltmischgut - 137 - 4.5.1 Einfluss des Ermüdungskriteriums - 137 - 4.5.2 Einfluss der Modifikationen - 138 - 4.5.3 Einfluss der Alterung - 139 - 4.5.4 Einfluss der Vorbelastung und Wasserlagerung - 141 - 4.5.5 Einfluss der Gesteinsart - 143 - 4.5.6 Einfluss äquivalente Bitumenrheologie - 145 - 4.5.7 Korrelation Ermüdungsverhalten Bitumen-Asphaltmischgut - 149 - 4.5.8 Diskussion - 150 - 5. Zusammenfassung und Ausblick - 153 - 5.1 Zusammenfassung - 153 - 5.2 Ausblick - 156 - 6. Literaturverzeichnis - 158 - Abbildungsverzeichnis - 170 - Tabellenverzeichnis - 176 - Anlagenverzeichnis - 178 - / With influencing the bitumen properties by means of various single or combined modifications, the complexity increases and with it the facilities to address and interpret material properties. This is not possible with conventional tests for the classification of binder properties. However, there are means to address the properties of these complex materials in a specific manner with a Dynamic Shear Rheometer (DSR) and the Dynamic Indirect tensile strength (IDT) test method. A key objective of this work has been to gain knowledge about the effects of multiple modifications in bitumen and bituminous mixtures. In doing so, methods for the investigation and interpretation of rheological properties were examined and developed. Due to the possibility to test the stiffness behavior of bitumen in the relevant temperature and frequency range, the correlation of the stiffness behavior of bitumen and asphalt made it possible to check current models for the development of the master curves first in the bitumen and then also for the asphalt mix. Thus, additional alternatives to support the development of asphalt-master curves and to increase the plausibility of the results have been demonstrated with the help of a DSR. A preliminary test has been developed for the fatigue behavior, which makes it possible to define and interpret the fatigue relevant relaxation range as a temperature range. In addition, various fatigue criteria have been applied in bitumen and bituminous mixtures. The binders and the asphalt mixtures were examined in the unaged to long-time-aged state. The fatigue behavior of all variations was also investigated for equivalent rheological behavior, varying rock type, preload and water storage. In addition, the raw data from the DSR fatigue tests has been used to develop an optimized methodology for incorporating the hysteresis effect on the fatigue behavior. It has been possible to show the different effects of the modifications on the stiffness behavior with the help of master curves and black diagrams. Among other things, the behavior of binders with pure polymer networks of elastomers and plastomers of binders with polymer networks of an elastomer and non-polymeric materials has been distinguished. By examining the fatigue behavior, it has been shown that the temperature range relevant for fatigue shifts significantly as a result of the modifications. All modifications have shown improved behavior in accordance with the experimental conditions of the „Working instructions for the determination of the stiffness and fatigue behavior of asphalts with the indirect tensile strength test as an input into the dimensioning” (AL Sp-Asphalt 09). Due to the above described variations of test conditions and aggregates significant deviations in the results have been found. It has been shown to what extent equivalent rheological behavior influences the fatigue behavior of the variants. In addition, it has been possible to show what influence the presence of water in the interface, as well as the variation of the aggregate type and the aging of the binder, can have on the fatigue behavior of asphalt. The investigations also show that the selected mathematical models and a proprietary model developed for the construction of the master curve of the multi-modified variants in the aged and unaged state are applicable for bitumen and bituminous mixtures.:Inhaltsverzeichnis 1. Einleitung - 10 - 1.1 Motivation - 10 - 1.2 Zielsetzung und Vorgehensweise - 11 - 2. Stand der Wissenschaft und Technik - 13 - 2.1 Mechanisches Verhalten von Bitumen und Asphalt - 13 - 2.1.1 Allgemein - 13 - 2.1.2 Grundlagen der Asphalt- und Bitumenrheologie - 13 - 2.1.3 Rheologische Modelle - 17 - 2.1.4 Zeit-Temperatur-Äquivalenzprinzip - 24 - 2.1.5 Mathematische Modelle - 26 - 2.1.6 Materialkenngrößen und Verhalten bei zyklischer Belastung - 28 - 2.1.7 Beanspruchung von Asphaltbefestigungen - 32 - 2.1.8 Ermüdungsverhalten - 34 - 2.2 Affinität - 41 - 2.2.1 Adhäsionsmodelle - 41 - 2.2.2 Versagensmodelle der Adhäsion - 42 - 2.3 Alterung - 43 - 2.3.1 Verdunstungsalterung - 43 - 2.3.2 Oxidative Alterung - 43 - 2.3.3 Strukturalterung - 44 - 2.4 Einfluss von Additiven und Polymermodifikationen auf die Bindemittel- und Mischguteigenschaften - 44 - 2.4.1 Polymermodifikation - 44 - 2.4.2 Additivierung - 49 - 2.4.3 Zusammenfassung - 54 - 3. Methodik - 55 - 3.1 Versuchsprogramm Bitumen - 55 - 3.1.1 Eingesetzte Materialien - 55 - 3.1.2 Probekörperherstellung und Lagerung - 58 - 3.1.3 Rheologische Untersuchung durch Dynamisches Scher-Rheometer - 59 - 3.2 Versuchsprogramm Asphalt - 75 - 3.2.1 Eingesetzte Materialien - 75 - 3.2.2 Probekörperherstellung und Probekörperkonditionierung - 76 - 3.2.3 Versuchsdurchführung des Spaltzug-Schwellversuchs - 78 - 4. Ergebnisdarstellung und Diskussion - 89 - 4.1 Vorversuche Bitumen - 89 - 4.1.1 Amplitudentests - 89 - 4.1.2 Versuchsrelevanter Temperaturbereich - 94 - 4.1.3 Diskussion - 96 - 4.2 Masterkurven Bitumen - 98 - 4.2.1 Zuverlässigkeit der Modelle - 98 - 4.2.2 Einfluss der Modifikationen - 100 - 4.2.3 Einfluss der Alterung - 107 - 4.2.4 Diskussion - 115 - 4.3 Ermüdungsverhalten Bitumen - 117 - 4.3.1 Einfluss des Ermüdungskriteriums - 117 - 4.3.2 Einfluss der Modifikationen - 118 - 4.3.3 Diskussion - 122 - 4.4 Steifigkeitsverhalten Asphaltmischgut - 123 - 4.4.1 Zuverlässigkeit der Modelle - 123 - 4.4.2 Einfluss der Modifikationen - 127 - 4.4.3 Einfluss der Alterung - 130 - 4.4.4 Einfluss der Gesteinsart - 132 - 4.4.5 Korrelation Steifigkeitsverhalten Bitumen-Asphaltmischgut - 134 - 4.4.6 Diskussion - 135 - 4.5 Ermüdungsverhalten Asphaltmischgut - 137 - 4.5.1 Einfluss des Ermüdungskriteriums - 137 - 4.5.2 Einfluss der Modifikationen - 138 - 4.5.3 Einfluss der Alterung - 139 - 4.5.4 Einfluss der Vorbelastung und Wasserlagerung - 141 - 4.5.5 Einfluss der Gesteinsart - 143 - 4.5.6 Einfluss äquivalente Bitumenrheologie - 145 - 4.5.7 Korrelation Ermüdungsverhalten Bitumen-Asphaltmischgut - 149 - 4.5.8 Diskussion - 150 - 5. Zusammenfassung und Ausblick - 153 - 5.1 Zusammenfassung - 153 - 5.2 Ausblick - 156 - 6. Literaturverzeichnis - 158 - Abbildungsverzeichnis - 170 - Tabellenverzeichnis - 176 - Anlagenverzeichnis - 178 -
3

Beschreibung des Ermüdungsverhaltens von Asphaltgemischen unter Verwendung von ein- und mehraxialen Zugschwellversuchen

Weise, Christiane 14 November 2008 (has links)
Für die Ermittlung der Ermüdungsfunktion sowie der E-Modul-Funktion sind in den europäischen Normen verschiedene Versuchsarten vorgesehen. In Deutschland werden bisher der Einaxiale Zugschwellversuch und der Spaltzugschwellversuch angewandt. Diese vergleichsweise einfachen Versuche können das Ermüdungsverhalten eines Asphaltgemisches in situ nur mit Einschränkungen (z.B. hinsichtlich des vorherrschenden Spannungszustandes) wiedergeben. Der Triaxialversuch mit Zug-/Druckschwellbelastung kann zur realitätsnahen Untersuchung des Ermüdungsverhaltens (Ermüdungsfunktion in Verbindung mit der E-Modul-Funktion) angewandt werden, da neben der frei wählbaren Zugbeanspruchung zusätzlich beliebige Druckbeanspruchungen normal zur Zugspannung auf den Probekörper aufgegeben werden können. Aufgrund der aufwändigen Versuchsdurchführung findet der Versuch bisher nur in der Forschung Anwendung. Die für die Dissertation ausgewerteten Daten umfassen die Ergebnisse von Einaxialen Zugschwellversuchen, Spaltzugschwellversuchen und Triaxialversuchen mit Zug-/Druckschwellbelastung an insgesamt sechs verschiedenen Asphaltgemischen. Die Einflüsse aus dem Hohlraumgehalt, der Belastungsfrequenz sowie der Mischgutart und -sorte auf das Ermüdungsverhalten konnten herausgearbeitet werden. Weiterhin gelang aus den Ergebnissen aller Versuchsarten die Aufstellung von Ermüdungsflächenfunktionen in Abhängigkeit von Dehnungsanteilen infolge verschiedener Spannungskomponenten (mehraxialer Spannungszustand) unter Berücksichtigung der in den Probekörpern der verschiedenen Ermüdungsversuche auftretenden Spannungskombinationen Zug- zu Druckspannung. Die Gültigkeit der ermittelten Ermüdungsflächenfunktion für andere, über die in den angewendeten Versuchsarten hinausgehende Spannungskombinationen muss mit Hilfe geeigneter (noch zu entwickelnder) Versuche überprüft werden.
4

Berücksichtigung von Temperaturfeldern bei Ermüdungsversuchen an UHPC

Deutscher, Melchior 07 March 2023 (has links)
Die Anforderungen an Baumaterialien steigen durch immer schlankere und höhere Tragwerke. Im Massivbau geht daher seit längerem die Materialentwicklung hin zu hochfesten und ultrahochfesten Betonen. Neben der steigenden statischen Beanspruchung nimmt gleichzeitig, bedingt durch immer ausgereiztere Konstruktionen, die Bedeutung der Ermüdungsfestigkeit zu. Deswegen liegt der Fokus der Forschung im Bereich der Hochleistungsbetone aktuell vor allem auf der Widerstandsfähigkeit gegenüber zyklischen Beanspruchungen. Dabei wurde in verschiedenen Forschungsvorhaben bei höheren Prüfgeschwindigkeiten bei Druckschwellversuchen zur Erzeugung von Wöhlerlinien eine Erwärmung der Probekörper festgestellt. Diese Arbeit widmet sich dieser Thematik bezogen auf ultrahochfesten Beton. Mit einer umfangreichen Parameterstudie konnte ein Überblick über maßgebende Einflussgrößen auf den Erwärmungsprozess gegeben werden. Als wichtigste Ursachen für die Temperaturerzeugung wurde zum einen ein inneres Reibungspotenzial festgestellt, welches mit geringer werdendem Größtkorn und durch wachsende Schädigung ansteigt. Zum anderen ist die eingetragene Energie pro Lastwechsel entscheidend. Anders als die Ermüdungsfestigkeit von Beton, die vor allem von der Oberspannung abhängig ist, ist die Erwärmung pro Lastwechsel von der Spannungsamplitude abhängig. Die Prüfgeschwindigkeit beeinflusst die messbare Erwärmung hingegen nur durch die Veränderung des Zeitraums, der pro Lastwechsel zur Temperaturabgabe zur Verfügung steht. Die Temperaturgenerierung pro Lastwechsel ist hingegen frequenzunabhängig. Ein negativer Einfluss der Probekörpererwärmung zeigt sich vor allem bei der deutlichen Reduzierung der Bruchlastwechselzahlen im Vergleich zu Versuchen, bei denen kein deutlicher Temperaturanstieg zu verzeichnen war. Basierend auf bisherigen Arbeiten zu hochfesten Betonen schlagen deswegen verschiedene Autoren eine Anpassung des Versuchsablaufs zur Begrenzung der Temperaturentwicklung im Probekörper vor. Die vorliegende Arbeit zeigt im Gegensatz dazu eine Methode auf, bei der die Erwärmung zugunsten einer zeiteffizienten Prüfung zugelassen und anschließend bei der Auswertung berücksichtigt wird. Als eine Hauptursache für das vorzeitige Versagen bei starker Erwärmung wurde die statische Druckfestigkeit, welche temperaturabhängig ist, ausgemacht. Steigt die Temperatur, reduziert sich gleichzeitig die Druckfestigkeit. Dies führt bei kraftgesteuerten Druckschwellversuchen mit konstantem Lastspiel zu einer Veränderung des bezogenen Spannungsspiels. Vor allem die stark steigende bezogene Oberspannung führt schlussendlich zu einem vorzeitigen Ermüdungsversagen. Da die Temperatur bei den Versuchen, die vor den rechnerischen Erwartungswerten versagen, stetig bis zum Versagenszeitpunkt ansteigt, ist der Probekörper einer sich über die Versuchsdauer veränderlichen bezogenen Beanspruchung ausgesetzt. Bei der Versuchsauswertung kann ein veränderliches Lastspiel nicht für die Einordnung in Wöhlerdiagramme verwendet werden. Weil die Verwendung der Lasteingangsgrößen zu einer Unterschätzung der Ermüdungsfestigkeit führt, muss eine Ermittlung eines äquivalenten konstanten Spannungsspiels erfolgen, welches die Festigkeitsveränderung des Betons berücksichtigt. Anhand der durchgeführten Druckschwellversuche und der temperaturabhängigen Druckfestigkeit wurde eine analytische Methode entwickelt, mit der unter Verwendung der anfänglichen Lastamplitude sowie der gemessenen maximalen Temperatur eine angepasste Oberspannung berechnet und dann die erreichte Bruchlastwechselzahl in ein Wöhlerdiagramm eingetragen werden kann. Diese Methode wird für den vertieft untersuchten ultrahochfesten Beton für eine Vielzahl von Lastkonfigurationen sowie zusätzlich für Versuchsergebnisse eines hochfesten Betons abschließend verifiziert.:Inhaltsverzeichnis 1 Einleitung und Aufbau 1 1.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Stand des Wissens 5 2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Betonermüdung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Ultrahochfester Beton (UHPC) . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 UHPC unter Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . 14 2.2 Einfluss der Temperatur auf die statische Druckfestigkeit . . . . . . . . . . . . . . 15 2.2.1 Wissenschaftliche Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Regelung nach fib Model Code 2010 (2012) . . . . . . . . . . . . . . . . . 17 2.3 Betonerwärmung bei zyklischen Versuchen – Wissensstand bis 2017 . . . . . . . . 18 2.3.1 Einflussparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Temperaturentwicklung im Probekörper . . . . . . . . . . . . . . . . . . . 23 2.4 Zielstellung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Betonerwärmung bei zyklischen Versuchen - Wissensstand ab 2017 . . . . . . . . 24 2.5.1 Elsmeier - Parameterstudie zur Erwärmung von hochfesten Vergussbetonen 24 2.5.2 Bode - Energetische Auswertung von Ermüdungsversuchen . . . . . . . . . 28 2.5.3 Schneider - Frequenzeinfluss auf den Ermüdungswiderstand von hochfestem Beton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.4 Markert - Feuchte- und Wärmeeinfluss auf die Ermüdungsschädigung von HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 Zusammenfassung und Abgrenzung . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Eigene Forschung 37 3.1 Grundlagen zur Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.2 Herstellung, Lagerungsbedingungen und Probekörpervorbereitung . . . . . 39 3.1.3 Probengeometrie und Messapplikationen . . . . . . . . . . . . . . . . . . . 39 3.1.4 Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.5 Betonchargen und Versuchsmatrix . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Auswertung von Temperaturmesswerten . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Temperaturentwicklung und -verteilung im Probekörper . . . . . . . . . . . . . . 46 3.4 Parameterstudie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 “Experimental Investigations on the Temperature Increase of Ultra-High Performance Concrete under Fatigue Loading“ Deutscher et al. (2019) . . 49 3.4.2 “Experimental Investigations on Temperature Generation and Release of Ultra-High Performance Concrete during Fatigue Tests“ Deutscher et al. (2020a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.3 “Heating rate with regard to temperature release of UHPC under cyclic compressive loading“ Deutscher et al. (2021a) . . . . . . . . . . . . . . . . 86 3.4.4 “Influence of the compressive strength of concrete on the temperature increase due cyclic loading“ Deutscher et al. (2020b) . . . . . . . . . . . . 98 3.4.5 Ergänzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.6 Zusammenfassung der Parameterstudie . . . . . . . . . . . . . . . . . . . . 116 3.5 Vergleich mit dem Stand des Wissens . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.1 Spannungsspiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.2 Frequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.3 Größtkorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5.4 Betonfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5.5 Probenalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.6 Berücksichtigung der Temperatur bei der Versuchsbewertung . . . . . . . . . . . 122 3.6.1 “Influence of temperature on the compressive strength of high performance and ultra-high performance concretes“ Deutscher et al. (2021b) . . . . . . 123 3.6.2 “Consideration of the heating of high-performance concretes during cyclic tests in the evaluation of results“ Deutscher (2021) . . . . . . . . . . . . . 134 3.6.3 Verifizierung an einem HPC . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4 Zusammenfassung und Ausblick 153 4.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5 Allgemeine Ergänzungen A1 5.1 Materialkennwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1 5.1.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1 5.1.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3 5.2 Druckfestigkeit unter Temperatureinfluss . . . . . . . . . . . . . . . . . . . . . . . A4 5.2.1 Klimakammerlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4 5.2.2 Wasserlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5 5.2.3 getrocknet im Trockenofen . . . . . . . . . . . . . . . . . . . . . . . . . . . A5 5.3 zyklische Druckschwellversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5 5.3.1 UHPC 1 Charge I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7 5.3.2 UHPC 2 Charge II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A11 5.3.3 UHPC 1 Charge III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16 5.3.4 Mörtel Charge IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20 5.3.5 NC 1 Charge V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21 5.3.6 UHPC 1 Charge VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A22 5.3.7 UHPC 1 Charge VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A23 5.3.8 NC 2 Charge VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A28 5.4 Restfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30 5.4.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30 5.4.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A31 / Due to ever slimmer and higher load-bearing structures the requirements on building materials are increasing. On the part of concrete, the development is therefore moving towards high-strength and ultra-high-strength concretes. In addition to the increasing static stress, the importance of fatigue strength is also increasing due to increasingly sophisticated constructions. Therefore, the focus in materials research is currently on resistance to cyclic stresses, especially in the area of high-performance concretes. Various reasearchers has been detected a heating of test specimens at higher load-speed during pressure swell tests to generate Wöhler lines. For this reason, this study is focused on the heating in relation to ultra-high-strength concrete. Using a comprehensive parameter study, an overview of the significant influencing variables on the heating process could be given. On the one hand, an internal friction potential which increases with decreasing maximum grain size and due to growing damage, could be indetified as an important causes of temperature generation. On the other hand, the applied energy per load cycle is decisive. Unlike the fatigue strength of concrete, which mainly depends on the maximum stress, the heating per load cycle is dependent on the amplitude. The load frequency only influences the measurable heating by changing the time period available per load change for temperature release. But the heating per load cycle is independent of the load frequency. A negative influence of the specimen heating could be observed in the significant reduction of the number of cycles to failure compared to tests in which there is no significant increase in temperature. Based on previous studies on high-strength concretes, various authors propose an adaptation of the test procedure to minimise the temperature development in the specimen. The present work proposes a method in which heating is allowed in favour of time-efficient testing and the maximum temperature is taken into account in the results. The static compressive strength, which is temperature-dependent, could be identified as a main cause of premature failure in the case of strong heating. If the temperature increases, the compressive strength is reduced simultaneously. This leads to a change in the related stress cycle in force-controlled pressure swell tests with constant load cycle. The increasing related maximum stresslevel causes finally a premature fatigue failure. All tests that fail before the calculated expected value heat up until failure. This leads to a permanently changing stress amplitude over the duration of the test. In the evaluation, a changeable load cycle cannot be used for the classification in Wöhler diagrams. Due to the fact that the use of the load input values leads to an underestimation of the fatigue strength, an equivalent constant stress cycle must be determined, which takes into account the strength change of the concrete. Based on the pressure swell tests carried out and the temperature-dependent compressive strength, an analytical method was developed. Using the initial load amplitude as well as the measured maximum temperature, an adjusted maximum stress level can be calculated. The achieved number of cycles to failure can be entered in a Wöhler diagram with the calculated maximum stress level. This method is finally verified for the ultra-high strength concrete investigated in further detail for a wide range of load configurations and additionally for test results of a high-strength concrete.:Inhaltsverzeichnis 1 Einleitung und Aufbau 1 1.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Stand des Wissens 5 2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Betonermüdung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Ultrahochfester Beton (UHPC) . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 UHPC unter Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . 14 2.2 Einfluss der Temperatur auf die statische Druckfestigkeit . . . . . . . . . . . . . . 15 2.2.1 Wissenschaftliche Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Regelung nach fib Model Code 2010 (2012) . . . . . . . . . . . . . . . . . 17 2.3 Betonerwärmung bei zyklischen Versuchen – Wissensstand bis 2017 . . . . . . . . 18 2.3.1 Einflussparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Temperaturentwicklung im Probekörper . . . . . . . . . . . . . . . . . . . 23 2.4 Zielstellung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Betonerwärmung bei zyklischen Versuchen - Wissensstand ab 2017 . . . . . . . . 24 2.5.1 Elsmeier - Parameterstudie zur Erwärmung von hochfesten Vergussbetonen 24 2.5.2 Bode - Energetische Auswertung von Ermüdungsversuchen . . . . . . . . . 28 2.5.3 Schneider - Frequenzeinfluss auf den Ermüdungswiderstand von hochfestem Beton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.4 Markert - Feuchte- und Wärmeeinfluss auf die Ermüdungsschädigung von HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 Zusammenfassung und Abgrenzung . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Eigene Forschung 37 3.1 Grundlagen zur Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.2 Herstellung, Lagerungsbedingungen und Probekörpervorbereitung . . . . . 39 3.1.3 Probengeometrie und Messapplikationen . . . . . . . . . . . . . . . . . . . 39 3.1.4 Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.5 Betonchargen und Versuchsmatrix . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Auswertung von Temperaturmesswerten . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Temperaturentwicklung und -verteilung im Probekörper . . . . . . . . . . . . . . 46 3.4 Parameterstudie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 “Experimental Investigations on the Temperature Increase of Ultra-High Performance Concrete under Fatigue Loading“ Deutscher et al. (2019) . . 49 3.4.2 “Experimental Investigations on Temperature Generation and Release of Ultra-High Performance Concrete during Fatigue Tests“ Deutscher et al. (2020a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.3 “Heating rate with regard to temperature release of UHPC under cyclic compressive loading“ Deutscher et al. (2021a) . . . . . . . . . . . . . . . . 86 3.4.4 “Influence of the compressive strength of concrete on the temperature increase due cyclic loading“ Deutscher et al. (2020b) . . . . . . . . . . . . 98 3.4.5 Ergänzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.6 Zusammenfassung der Parameterstudie . . . . . . . . . . . . . . . . . . . . 116 3.5 Vergleich mit dem Stand des Wissens . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.1 Spannungsspiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.2 Frequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.3 Größtkorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5.4 Betonfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5.5 Probenalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.6 Berücksichtigung der Temperatur bei der Versuchsbewertung . . . . . . . . . . . 122 3.6.1 “Influence of temperature on the compressive strength of high performance and ultra-high performance concretes“ Deutscher et al. (2021b) . . . . . . 123 3.6.2 “Consideration of the heating of high-performance concretes during cyclic tests in the evaluation of results“ Deutscher (2021) . . . . . . . . . . . . . 134 3.6.3 Verifizierung an einem HPC . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4 Zusammenfassung und Ausblick 153 4.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5 Allgemeine Ergänzungen A1 5.1 Materialkennwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1 5.1.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1 5.1.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3 5.2 Druckfestigkeit unter Temperatureinfluss . . . . . . . . . . . . . . . . . . . . . . . A4 5.2.1 Klimakammerlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4 5.2.2 Wasserlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5 5.2.3 getrocknet im Trockenofen . . . . . . . . . . . . . . . . . . . . . . . . . . . A5 5.3 zyklische Druckschwellversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5 5.3.1 UHPC 1 Charge I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7 5.3.2 UHPC 2 Charge II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A11 5.3.3 UHPC 1 Charge III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16 5.3.4 Mörtel Charge IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20 5.3.5 NC 1 Charge V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21 5.3.6 UHPC 1 Charge VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A22 5.3.7 UHPC 1 Charge VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A23 5.3.8 NC 2 Charge VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A28 5.4 Restfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30 5.4.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30 5.4.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A31
5

Crack-bridging behaviour of polymer fibres in Strain-Hardening Cement-based Composites (SHCC) subject to alternating tension-compression cyclic loading

Ranjbarian, Majid 09 December 2021 (has links)
Concrete is undoubtedly the most important construction material, with widespread applications worldwide. Despite its many advantages, however, concrete exhibits low tensile strength and tends toward brittle failure. The most promising approach for improvement of its tensile properties is the addition of fibres. By addition of only one or two percent of high-performance polymer fibres to a cementitious matrix, strain-hardening can be developed under uniaxial tensile loading. Such materials yield multiple cracking and permit large inelastic deformation in a hardening regime, for which they are usually called Strain-Hardening Cement-based Composites (SHCC). However, the behaviour of SHCC depends on loading conditions, where the most critical case is cyclic loading in tension-compression regimes, in which the ductile properties of the composite can be lost after only several hundred cycles due to degradation of the fibre bridging capacity. The thesis at hand presents the results of experimental investigations into the crack-bridging behaviour of polymer fibres in SHCC subject to alternating tension-compression loading regimes. The investigations covered monotonic loading as well. The experimental programme included fibre tension tests; single-sided, single fibre pull-out tests; double-sided, single and multiple fibre pull-out tests; and microscopic analysis of the specimens after testing. The bridging and pull-out behaviour of single PVA fibres embedded in cement-based matrices were comprehensively characterised and described by a new model. The Locking Front Model explains different interaction phenomena between fibre and matrix after full de-bonding. Furthermore, the interaction and damage mechanisms under cyclic loading were understood. The damage types depend on various parameters such as fibre inclination angle to the crack plane. Above all, however, the deterioration of bridging capacity results from the damage of the fibres between the crack faces in alternating tension-compression regime. The severity of damage is mostly determined by the number of cycles, compressive stress level, and crack width. The results of the experimental investigations at the micro- and meso-levels were analysed further to establish a multi-scale approach for describing the behaviour of a single crack in the composite. The Non-Simultaneity Hypothesis is proposed, which suggests that the crucial events of fibre bridging action may occur non-simultaneously with increasing crack opening displacement, and the bridging parameters may be reliably determined based on the overall behaviour of a group of specimens. Additionally, the Three-Stage Micromechanics-based Model is developed to describe the bridging behaviour of the fibres with different embedded lengths. The parameters of the model were obtained according to the overall bridging behaviour and the Non-Simultaneity Hypothesis. The parameters were validated by comparing prediction with experiment and observation of bridging behaviour in the tests with varied embedded lengths and multiple fibres. In the framework of the novel concept Criterion-Dependent Reference Volume (CDRV), the effective volume fractions of the fibres assuming non-uniform distribution of the fibres were determined over the length of a hypothetical specimen. The behaviour of a single crack was then predicted at the composite level and compared to the equivalent experimental results. The whole multi-scale approach manifests a considerable capability for analysing the behaviour of Fibre-Reinforced, Cement-based Composite (FRCC). Finally, the concept of Representative Continuum with Predetermined Cracking Sequence (RCPCS) is briefly explained for describing the stress-strain behaviour of SHCC in further development of the multi-scale approach. / Beton ist weltweit mit seinen vielfältigen Anwendungsmöglichkeiten zweifelsohne der wichtigste Baustoff. Trotz der vielen Vorteile weist der Beton eine niedrige Zugfestigkeit und ein sprödes Versagen auf. Eine vielversprechende Methode zur Verbesserung dieser stellt seine Bewehrung mit Kurzfasern dar. Mit lediglich ein oder zwei Volumengehalt Prozent von Hochleistungspolymerfasern könnte das Dehnungs-Verfestigungsverhalten (engl.: Strain-hardening behaviour) unter einachsiger Zugbelastung erreicht werden. Allerdings ist das Verhalten des SHCC (engl.: Strain-Hardening Cementitious Composite) abhängig von dem Belastungsregime. Am kritischsten ist das zyklische Zug-Druck-Wechselbelastungsregime, denn dadurch wird kein duktiles Verhalten nach nur mehreren hundert Zyklen möglich sein, weil eine starke Degradation des Faserüberbrückungsvermögens stattfindet. Diese Dissertation beschreibt die Ergebnisse von experimentellen Untersuchungen des Überbrückungsverhaltens der Polymerfasern in SHCC mit dem Schwerpunkt Zug-Druck-Wechselbelastung. Außerdem umfassen die Untersuchungen monotone Belastung. Das experimentelle Programm enthält Faserzugversuche, einseitige- und zweiseitige Einzelfaserauszugsversuche sowie mikroskopische Analysen an den Probekörpern nach den Experimenten. Das Überbrückungs- und Auszugsverhalten der einzelnen PVA-Faser eingebettet in einer zementbasierten Matrix wurden ausführlich charakterisiert und mit einem neuen Modell beschrieben. Das „Locking Front Model“ erläutert spezifische Phänomene des Zusammenspiels der PVA-Faser und Matrix nach der vollen Ablösung. Zusätzlich wurden die Mechanismen der Zusammenwirkung und Schädigungen unter zyklischer Belastung dargestellt. Die Schädigungsarten sind abhängig von den verschiedenen Parametern wie z. B. Faserwinkel zur Rissebene. Vor allem resultierte die Verschlechterung der Überbrückungseigenschaften aus den Schädigungen der Faser zwischen den Rissebenen im Zug-Druck-Wechselbelastungsregime. Die Intensität der Schädigungen ist meistens mit Zyklenanzahl, zyklischer Druckbelastung und Rissbreiten korreliert. Die Ergebnisse der experimentellen Untersuchungen auf der Mikro- sowie Mesoebene wurden weiter ausgewertet, um einen Multiskalenansatz zur Bestimmung des Verhaltens eines einzelnen Risses im Werkstoff zu schaffen. Die „Non-Simultaneity Hypothese“ wurde vorgeschlagen, welche aussagt, den entscheidenden Vorgänge des Überbrückungsverhaltens der Fasern möglicherweise nicht gleichzeitig bei Vergrößerung der Rissöffnung auftreten. Deswegen sollten die Überbrückungsparameter am besten basierend auf dem allgemeinen Verhalten von vielen Proben in einer Gruppe bestimmt werden. Außerdem wurde das „Three-Stage Model“ zur Bestimmung des Überbrückungsverhaltens der Fasern mit verschiedenen Einbettungslängen entwickelt. Die Parameter des Modells wurden basierend auf dem allgemeinen Überbrückungsverhalten und der „Non-Simultaneity Hypothese“ bestimmt. Dann werden diese Parameter mit dem Überbrückungsverhalten anderer Einbettungslängen oder multipellen Fasern validiert. Im Rahmen des neuen Konzeptes, „Criterion-Dependent Reference Volume (CDRV)“, werden der effektive Volumenanteil der Faser in der Länge einer hypothetischen Probe aus Faserbeton mit ungleichmäßiger Faserverteilung bestimmt. Das Verhalten eines einzelnen Risses wird dann auf der Werkstoffebene bestimmt und mit den experimentellen Ergebnissen verglichen. Der gesamte Multiskalenansatz manifestiert wesentliche Fähigkeit zur Analyse des Verhaltens von Faserbeton. Schließlich wird ein neues Konzept, „Representative Continuum with Predetermined Cracking Sequence (RCPCS)“, zur Bestimmung der Spannungs-Dehnungsbeziehung des hochduktilen Betons (SHCC) als zukünftige Entwicklungsmöglichkeit des vorliegenden Multiskalenansatzes kurz vorgestellt.
6

Berechnungsansatz für Strukturbauteile aus Holzfurnierlagenverbundwerkstoff – WVC / Calculation approach of structures made from Wood Veneer Composite – WVC

Eichhorn, Sven 15 February 2013 (has links) (PDF)
Es wird ein einfacher Berechnungsansatz für ein Baukastensystem aus Kastenprofilen verschiedener Querschnittsabmessungen erarbeitet. Diese Profile bestehen aus WVC (Wood Veneer Composites, Holzfurnierlagenverbundwerkstoffen). Der Ansatz bildet den statischen Lastfall und das Ermüdungsverhalten unter schwellende Dreipunktbiegung ab. Am Beispiel eines ausgewählten Strukturbauteils aus handelsüblichen Birkensperrholz wird der Berechnungsansatz konkretisiert und durch Versuche evaluiert. Aufbauend auf dem Kraft-Verformungsverhalten der analysierten Einzelbauteile und der kapillarporösen Struktur des Holzes wird bei dem Berechnungsansatz auf eine Analyse der Spannungen verzichtet. Stattdessen wird als Berechnungskriterium die kritische Normaldehnung in der Randfaser der Strukturbauteile genutzt. Weiterhin wird eine Methode vorgestellt um mittels niederzyklischen Ermüdungsversuchs (LCF, ca. 1e+03 Lastwechsel) den „Knickpunkt“ der Zeitfestigkeitslinie eines einstufigen Ermüdungsversuchs bei hohen Lastspielzahlen (HCF, 1e+06 bis 1e+07 Lastwechsel) für diese Strukturbauteile zu bestimmen. / It was developed a simple approach for the calculation of a modular construction system for box sections (profile structures) of different cross-sectional dimensions. These profile structures consists of WVC (Wood Veneer Composites). The approach maps the static load case and the fatigue behavior under pulsating three-point bending. By using a structural component made from commercial birch plywood, the calculation approach is specified and verified. Based on the force-deformation behavior of the analyzed single components in connection with the capillary-porous structure of the wood, the calculation approach dispense on an analysis of the tensions. Instead, a criterion, which calculates the critical normal strain in the outer fibers of the structural components, is used. Furthermore, a method of a low-cycle fatigue test (LCF, abbr. 1e+03 cycles) is presented. This method detects the “knee point" of the fatigue limit line for the profiles. That point is usually determined by the use of a high-cycle fatigue tests (HCF, 1e+06 until 1e+07 cycles).
7

Berechnungsansatz für Strukturbauteile aus Holzfurnierlagenverbundwerkstoff – WVC: Berechnungsansatz für Strukturbauteile ausHolzfurnierlagenverbundwerkstoff – WVC

Eichhorn, Sven 19 December 2012 (has links)
Es wird ein einfacher Berechnungsansatz für ein Baukastensystem aus Kastenprofilen verschiedener Querschnittsabmessungen erarbeitet. Diese Profile bestehen aus WVC (Wood Veneer Composites, Holzfurnierlagenverbundwerkstoffen). Der Ansatz bildet den statischen Lastfall und das Ermüdungsverhalten unter schwellende Dreipunktbiegung ab. Am Beispiel eines ausgewählten Strukturbauteils aus handelsüblichen Birkensperrholz wird der Berechnungsansatz konkretisiert und durch Versuche evaluiert. Aufbauend auf dem Kraft-Verformungsverhalten der analysierten Einzelbauteile und der kapillarporösen Struktur des Holzes wird bei dem Berechnungsansatz auf eine Analyse der Spannungen verzichtet. Stattdessen wird als Berechnungskriterium die kritische Normaldehnung in der Randfaser der Strukturbauteile genutzt. Weiterhin wird eine Methode vorgestellt um mittels niederzyklischen Ermüdungsversuchs (LCF, ca. 1e+03 Lastwechsel) den „Knickpunkt“ der Zeitfestigkeitslinie eines einstufigen Ermüdungsversuchs bei hohen Lastspielzahlen (HCF, 1e+06 bis 1e+07 Lastwechsel) für diese Strukturbauteile zu bestimmen. / It was developed a simple approach for the calculation of a modular construction system for box sections (profile structures) of different cross-sectional dimensions. These profile structures consists of WVC (Wood Veneer Composites). The approach maps the static load case and the fatigue behavior under pulsating three-point bending. By using a structural component made from commercial birch plywood, the calculation approach is specified and verified. Based on the force-deformation behavior of the analyzed single components in connection with the capillary-porous structure of the wood, the calculation approach dispense on an analysis of the tensions. Instead, a criterion, which calculates the critical normal strain in the outer fibers of the structural components, is used. Furthermore, a method of a low-cycle fatigue test (LCF, abbr. 1e+03 cycles) is presented. This method detects the “knee point" of the fatigue limit line for the profiles. That point is usually determined by the use of a high-cycle fatigue tests (HCF, 1e+06 until 1e+07 cycles).
8

Mikrostrukturorientierte Charakterisierung mechanischer Eigenschaften von AlSi10 gelöteten CrNi Stahl/Aluminium Mischverbunden

Fedorov, Vasilii 16 March 2022 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung von CrNi-Stahl/Aluminium-Mischverbunden mit dem Ziel der Verbesserung der mechanischen Eigenschaften und der Erhöhung der Lebensdauer der Lötverbindungen. Da sich die Eigenschaften der Fügepartner stark unterscheiden, ist ein geeignetes Fügeverfahren erforderlich. Die wesentliche Herausforderung besteht in der Vermeidung der Bildung von dicken intermetallischen Schichten in der Reaktionszone, welche die mechanischen Eigenschaften der resultierenden Lötverbindungen verschlechtern. Dementsprechend wird ausgehend vom Stand der Technik ein Konzept zur vollständigen Untersuchung der Mikrostruktur-Eigenschafts-Beziehungen der Mischverbunde erarbeitet und umgesetzt. Die Mischverbunde werden durch Induktionslöten hergestellt, was einen lokalen Wärmeeintrag in die Fügestelle ermöglicht. Dadurch können Lötverbindungen mit dünnen Reaktionszonen erzeugt werden. Das Potenzial der Lötverbindungen wird anhand von Zugscher- und Ermüdungsversuchen aufgezeigt, die mit den Ergebnissen der Mikrostrukturanalyse und der fraktografischen Bewertung korreliert werden.:Abkürzungen und Formelzeichen iii Abkürzungen iii Formelzeichen iv Abbildungsverzeichnis v Tabellenverzeichnis xi 1 Einleitung und Motivation 1 2 Stand der Technik 2 2.1 Anwendungen von Stahl/Aluminium-Mischverbunden 2 2.2 Stoffschlüssiges Fügen von Stahl/Aluminium-Mischverbunden 3 2.2.1 Schweißen von Stahl/Aluminium-Mischverbunden 3 2.2.2 Löten von Stahl/Aluminium-Mischverbunden 8 2.2.2.1 Grundlagen 8 2.2.2.2 Verfahren und Lotwerkstoffe 10 2.3 Besonderheiten bei Stahl/Aluminium-Mischverbunden 15 2.3.1 Intermetallische Fe-Al-Verbindungen in der Reaktionszone 15 2.3.2 Kontrolle der Bildung und des Wachstums der Reaktionszone 20 2.3.3 Problematik bei mechanischer Charakterisierung der Mischverbunde 23 3 Folgerungen und Zielstellung 27 4 Experimentelle Durchführung 29 4.1 Grund- und Lotwerkstoffe 29 4.2 Benetzungs- und Lötversuche 31 4.3 Mikrostrukturelle Charakterisierung 34 4.3.1 Mikrostrukturanalyse 34 4.3.2 Mikrohärtemessung und Nanoindentation 35 4.3.3 Thermische Auslagerung 37 4.4 Mechanische Charakterisierung 39 4.4.1 Zugscher- und Warmzugscherversuche 39 4.4.2 Ermüdungsversuche 40 5 Ergebnisse 43 5.1 Benetzungsverhalten 43 5.2 Mikrostrukturelle Untersuchungen 45 5.2.1 Mikrostruktur der Lötverbindungen und Bildung der Reaktionszone 45 5.2.2 Mechanische Charakteristika der Gefügebestandteile 55 5.3 Festigkeitsuntersuchungen 59 5.3.1 Quasistatische Untersuchungen gelöteter Mischverbunde 59 5.3.2 Ermüdungsverhalten gelöteter Mischverbunde 69 5.4 Korrelation zwischen Reaktionszonendicke und Festigkeit 81 6 Diskussion der Ergebnisse 88 7 Zusammenfassung und Ausblick 92 8 Anlagen 93 8.1 Übersicht der Benetzungsproben auf Stahl X5CrNi18-10 93 8.2 Übersicht der Benetzungsproben auf AlMn1Cu 94 8.3 Beispiel der Ergebnisse der EDX-Analyse 95 8.4 Härteverlauf über die Reaktionszone 96 8.5 EBSD-Analyse der Lötverbindung 97 8.6 Mikrozugversuche 98 8.7 TEM-Untersuchungen der hergestellten Lötverbindungen 99 9 Literaturverzeichnis 102 10 Normenverzeichnis 112 11 Publikationen 113 / This thesis deals with the production of aluminum/stainless steel mixed joints in order to improve the mechanical properties and to extend the lifetime of the joints. Because of the different physical properties of the joining partners, a suitable joining technique is necessary. In comparison to welding, brazing offers significant advantages due to the lower liquidus temperature of the used brazing fillers. The main challenge is to prevent the formation of thick intermetallic layers in the reaction zone. These layers deteriorate the mechanical properties of the resulting joints predominantly. Correspondingly, a concept for the complete investigation of the microstructure-property relationships of the brazed joints is investigated. The joints are produced by induction brazing, which takes place in a short process time and allows a local heat input into the joint. Therefore, joints with a thin intermetallic layer in the reaction zone can be manufactured. The potential of the joints is demonstrated using monotonic tensile shear tests as well as fatigue tests. The achieved results are correlated with the results of the microstructural and fractographic analysis.:Abkürzungen und Formelzeichen iii Abkürzungen iii Formelzeichen iv Abbildungsverzeichnis v Tabellenverzeichnis xi 1 Einleitung und Motivation 1 2 Stand der Technik 2 2.1 Anwendungen von Stahl/Aluminium-Mischverbunden 2 2.2 Stoffschlüssiges Fügen von Stahl/Aluminium-Mischverbunden 3 2.2.1 Schweißen von Stahl/Aluminium-Mischverbunden 3 2.2.2 Löten von Stahl/Aluminium-Mischverbunden 8 2.2.2.1 Grundlagen 8 2.2.2.2 Verfahren und Lotwerkstoffe 10 2.3 Besonderheiten bei Stahl/Aluminium-Mischverbunden 15 2.3.1 Intermetallische Fe-Al-Verbindungen in der Reaktionszone 15 2.3.2 Kontrolle der Bildung und des Wachstums der Reaktionszone 20 2.3.3 Problematik bei mechanischer Charakterisierung der Mischverbunde 23 3 Folgerungen und Zielstellung 27 4 Experimentelle Durchführung 29 4.1 Grund- und Lotwerkstoffe 29 4.2 Benetzungs- und Lötversuche 31 4.3 Mikrostrukturelle Charakterisierung 34 4.3.1 Mikrostrukturanalyse 34 4.3.2 Mikrohärtemessung und Nanoindentation 35 4.3.3 Thermische Auslagerung 37 4.4 Mechanische Charakterisierung 39 4.4.1 Zugscher- und Warmzugscherversuche 39 4.4.2 Ermüdungsversuche 40 5 Ergebnisse 43 5.1 Benetzungsverhalten 43 5.2 Mikrostrukturelle Untersuchungen 45 5.2.1 Mikrostruktur der Lötverbindungen und Bildung der Reaktionszone 45 5.2.2 Mechanische Charakteristika der Gefügebestandteile 55 5.3 Festigkeitsuntersuchungen 59 5.3.1 Quasistatische Untersuchungen gelöteter Mischverbunde 59 5.3.2 Ermüdungsverhalten gelöteter Mischverbunde 69 5.4 Korrelation zwischen Reaktionszonendicke und Festigkeit 81 6 Diskussion der Ergebnisse 88 7 Zusammenfassung und Ausblick 92 8 Anlagen 93 8.1 Übersicht der Benetzungsproben auf Stahl X5CrNi18-10 93 8.2 Übersicht der Benetzungsproben auf AlMn1Cu 94 8.3 Beispiel der Ergebnisse der EDX-Analyse 95 8.4 Härteverlauf über die Reaktionszone 96 8.5 EBSD-Analyse der Lötverbindung 97 8.6 Mikrozugversuche 98 8.7 TEM-Untersuchungen der hergestellten Lötverbindungen 99 9 Literaturverzeichnis 102 10 Normenverzeichnis 112 11 Publikationen 113
9

Ermüdungsverhalten von Bauteilen aus Wood Polymer Composite im Anwendungsfeld der Fördertechnik

Schubert, Christine, Eichhorn, Sven, Kluge, Patrick, Penno, Eric 12 December 2022 (has links)
Im Projekt wurde das Ermüdungsverhalten eines hochgefüllten, extrudierten Holz- Polymer- Werkstoffes (Wood Polymer-Composite, kurz: WPC) und dessen technisches Halbzeug (WPC-Systemprofil) im Anwendungsfeld der Fördertechnik erforscht. Kernsegment im Projekt ist das hochgefüllte WPC-Extrusionsprofil als Trag- und Gleitelement im Hängefördersystem (HFS). Im ersten Schritt wurde das Kriechverhalten (langzeitstatisch) und Ermüdungsverhalten unter dynamisch-schwingender Belastung (langzeitdynamisch) am produktspezifischen WPC-Material und am WPC-Systembauteil untersucht. Das Prüfregime bezieht sich dabei auf das reale Belastungskollektiv in der Anwendung des Hängefördersystems, welches vorrangig einer Dreipunktbiegebelastung im WPC-Systemprofil und einer Zugbelastung in der Verbindungsstelle entspricht. Aufbauend auf die Material- und Bauteiluntersuchung wurde der Dauerlauftest am Funktionsprototyp (Hängefördersystem) durchgeführt. Dabei wurden die Kriechneigung des WPC-Systemprofils und der Vorspannkraftverlust in der Verbindungsstelle im praxisrelevanten Fall überwacht. / In the research project the fatigue behavior of a high filled extruded Wood Polymer Composite (WPC) and its technical product were investigated in the application of material handling technology. The main focus of the project is the high filled WPC extrusion profile, which is applied as a sliding rail for the use in an overhead material handling system. In the first step the creep behavior (long-term static load) and fatigue behavior under dynamic-oscillating loads were studied on the product-specific WPC material and on the WPC component. The testing procedure refers to the real stress collection in the application of the overhead material handling system, which corresponds to a three-point bending load in the profile and a tensile load in the connection point. Furthermore, an endurance test was carried out under practical conditions on the overhead matrial handling system to oversee the long-term mechanical properties of the WPC sliding rail and the loss of the preloaded force in the connection point.

Page generated in 0.0964 seconds