Spelling suggestions: "subject:"error rate"" "subject:"arror rate""
41 |
Enhancing macrocell downlink performance through femtocell user cooperationZaid, Adem Mabruk 28 November 2011 (has links)
This thesis studies cooperative techniques that rely on femtocell user diversity to improve the downlink communication quality of macrocell users. We analytically analyze and evaluate the achievable performance of these techniques in the downlink of Rayleigh fading channels. We provide an approximation of both the bit-error rate (BER) and the data throughput that macrocell users receive with femtocell user cooperation. Using simulations, we show that under reasonable SNR values, cooperative schemes enhance the performances of macrocells by improving the BER, outage probability, and data throughput of macrocell users significantly when
compared with the traditional, non-cooperative schemes. / Graduation date: 2012
|
42 |
Polar codes for compress-and-forward in binary relay channelsBlasco-Serrano, Ricardo, Thobaben, Ragnar, Rathi, Vishwambhar, Skoglund, Mikael January 2010 (has links)
We construct polar codes for binary relay channels with orthogonal receiver components. We show that polar codes achieve the cut-set bound when the channels are symmetric and the relay-destination link supports compress-and-forward relaying based on Slepian-Wolf coding. More generally, we show that a particular version of the compress-and-forward rate is achievable using polar codes for Wyner-Ziv coding. In both cases the block error probability can be bounded as O(2-Nβ) for 0 < β < 1/2 and sufficiently large block length N. / <p>© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. QC 20111207</p>
|
43 |
Misbehaving relay detection for cooperative communications using a known or unknown distribution functionsWang, Sheng-Ming 11 January 2012 (has links)
In the cooperative communications, the users relay each other¡¦s signal and thus forming multiple transmission paths to the destination and therefore the system can achieve spatial diversity gain. Decode-and-forward and amplify-and-forward are the most popular relaying strategies in the literature due to their simplicity. However, in practice, cooperative users acting as relays may not always normally operated or trustworthy. When the relay misbehavior is present in
the cooperative networks, the communication performance may degrade dramatically and the users may be even better off without cooperation. Therefore, it is necessary for the destination to determine the misbehaving relays and to take appropriate actions to ensure that cooperative advantages are preserved. In this thesis, we focus on developing a misbehaving relay detection method to detect whether or not the system is in the presence of some misbehaving relays. After performing misbehaving relay detection, the destination removes the signals from the un-
reliable paths and then uses maximal ratio combing to achieve spatial diversity. The simulation results conducted by the thesis show that the proposed method is more robust as compared with those without employing misbehaving relay detection when the system is in the presence of some misbehaving relays.
|
44 |
Misbehaving Relay Detection for Cooperative Communications without the Knowledge of Relay MisbehaviorsLi, Chieh-kun 17 July 2012 (has links)
In the cooperative communications, the users relay each other's signal and thus form multiple transmission paths to the destination and therefore the system can achieve spatial diversity gain.
Most studies in the literature assumed that cooperative users acting as the relays are normally operated and trustworthy. However, this may not always be true in practice. When the relay misbehaviors are present in the cooperative communications, the communication performance may degrade dramatically and the users may be even better off without cooperation. Therefore, it is necessary for the destination to determine the misbehaving relays and to take appropriate actions
to ensure that cooperative advantages are preserved.
This thesis considers both models in which the cooperative communications are with direct path (WDP) and without direct path (WODP).
Utilizing the proposed Kolmogorov-Smirnov test mechanism, the destination identifies the misbehaving relays within the cooperative
communications and then excludes their transmitting messages when performing the diversity combining to infer the symbols of interest sent by the source.
In addition, this thesis provides the bit error rate (BER) analysis of the cooperative communications
employing the proposed misbehaving relay detectors. The simulation results demonstrate that the proposed methods have robust performance when the relay misbehaviors are present in the cooperative communications.
|
45 |
The Performance Analysis of the MIMO Systems Using Interference Alignment with Imperfect Channel State InformationHsu, Po-sheng 17 July 2012 (has links)
Recently, interference alignment (IA) has emerged as a promising technique to effectively mitigate interference in wireless communication systems. It has also evolved as a powerful technique to achieve the optimal degrees of freedom of interference channel. IA can be constructed in many domains such as space, time, frequency and codes. Currently, most researches on developing IA assume that channel state information (CSI) is well-known at the transceiver.
However, in practice, perfect CSI at the transceiver can¡¦t be obtained due to many factors such as channel estimation error, quantization error, and feedback error. Under our investigation, the performance of IA is very sensitive to imperfect CSI. Therefore, this thesis proposes a spatial domain IA scheme for the three-user multiple-input multiple-output (MIMO) downlink
interference channels, and analyzes the effect of channel estimation errors by modeling the estimation error as independent complex Gaussian random variables. The approximated bit error rate (BER) for the system with MIMO Zero-Forcing equalizer using IA is derived.
|
46 |
A Wireless Ad Hoc Routing protocol Based on Physical Layer CharacteristicsLin, Sie-Wei 24 June 2003 (has links)
In recent years, there has been a growing interest in wireless ad hoc
network. One of the major issues in wireless network is developing
efficient routing protocol. Based on the concept of designing protocol
model such as OSI model, the designers distilled the process of
transmitting data to its most fundamental elements and identified which
networking functions had related uses and collected those functions into
discrete groups that became the layers. It is not suitable to design wireless
ad hoc routing protocol based on OSI model conception because the OSI
model is developed from the view point of wired network and there are
many different characteristics between wired and wireless environment.
The main different characteristics between wired and wireless are the
mobility of mobile host and the transmission medium. Such differences
have great effect on network performance. Due to the differences between
wired and wireless characteristics, we present a comprehensive
conception of designing wireless ad hoc routing protocol. In this context,
we provide a wireless ad hoc routing protocol based on physical layer
characteristics, ex: bit error rate, robust link. Our routing protocol will
find out a route in good transmission environment and it is efficient to
improve network throughput. Furthermore, our routing protocol will
decrease the number of route request packets, the amount of
retransmissions, link breakage rate, and increase throughput.
|
47 |
Performance Analysis of 3-hop using DAF and DF over 2-hop Relaying ProtocolsMehmood, Faisal, Ejaz, Muneeb January 2013 (has links)
In wireless Communication, the need of radio spectrum increases nowadays. But in the system we are losing approximately 82-86% of spectrum most of the time due to the absence of Primary User (PU). To overcome this issue Cognitive Radio (CR) is an admirable approach. The concept of cooperative communication needs to be considering because high data rate is the demand for wireless services. Cooperative diversity in the network realized by 3-hop Decode, Amplify and Forward (DAF) and Decode and Forward (DF) and in 2-hop DF and Amplify and Forward (AF) Protocols implemented in cognitive radio communication network using Orthogonal Space Time Block Coding (OSTBC). The communication between end points is accomplished by using Multiple Input and Multiple Output (MIMO) antenna arrangement. During the Propagation, Alamouti Space Time Block Coding is used to accomplish spatial diversity and the encoded data is transmitted through Rayleigh fading channel. CR decodes the transmitted signal using Maximum Likelihood (ML) decoding method. Afterward signal broadcast toward the destination. To check the energy level of signal, energy detection technique applies at the Cognitive Controller (CC). Finally, CC will take ultimate decision for the presence of primary user if the energy level of signal is greater than predefined threshold level, it means PU is present otherwise it is absent. The main objective of this thesis is to analyze the performance of 3-hop and 2-hop communication network using relays. The performance is compared on the bases of two parameters i.e. Bit Error Rate (BER) and Probability of Detection (PD). The results are processed and validated by MATLAB simulation.
|
48 |
Performance Evaluation of a Wireless Protocol for Mesh Networking under the Influence of Broadband Electromagnetic NoiseWoo, Lily Lai Yam 09 April 2010 (has links)
Migrating from a wired to a wireless implementation for communication system used in industrial applications is a logical move to avoid the many shortcomings associated with wires. When operated under harsh environments, those wires can break and could cause not only damage to the system but also endanger human lives. However, it is not well documented how well a wireless protocol can work under such harsh industrial environments. This thesis attempts to answer this research question in the point of view of gauging the performance of a wireless protocol under the influence of electromagnetic noise. More specifically, the type of noise signal that is the focus of this investigation is the random, pulsed type (e.g., discharges caused by sparking) that creates a hyperbolic broadband disturbance in the frequency domain. Consequently, a fractal noise model is used to study noise of this nature. The steps toward achieving this goal include: requirements gathering, wireless technology selection; noise modelling and synthesis; real noise capture and analysis to validate the chosen noise model; high-frequency fractal noise emulation in hardware; the use of a novel noise injection method for empirical work; and the conducting of a controlled synthetic noise-to-wireless node performance evaluation to obtain performance measure in the form of packet error rate (PER). Performance data in terms of PER versus signal-to-noise ratio (SNR) for various nodes separation have been collected. There were three significant findings: the obtained performance curves follow the standard 'S' trend; for a specific desired reliability (denoted by a certain PER), the SNR at the transmitter needs to be boosted as the correlation of the noise being present increases; and the maximum distance between nodes separation for a certain reliability to be achieved depends exponentially with the transmitter‟s SNR. The relationship in the third finding assists in placement of wireless nodes, which in turn can determine the minimum amount of wireless nodes required for an industrial system to reach the desired system reliability, thus boasting network cost saving.
|
49 |
Performance Evaluation of a Wireless Protocol for Mesh Networking under the Influence of Broadband Electromagnetic NoiseWoo, Lily Lai Yam 09 April 2010 (has links)
Migrating from a wired to a wireless implementation for communication system used in industrial applications is a logical move to avoid the many shortcomings associated with wires. When operated under harsh environments, those wires can break and could cause not only damage to the system but also endanger human lives. However, it is not well documented how well a wireless protocol can work under such harsh industrial environments. This thesis attempts to answer this research question in the point of view of gauging the performance of a wireless protocol under the influence of electromagnetic noise. More specifically, the type of noise signal that is the focus of this investigation is the random, pulsed type (e.g., discharges caused by sparking) that creates a hyperbolic broadband disturbance in the frequency domain. Consequently, a fractal noise model is used to study noise of this nature. The steps toward achieving this goal include: requirements gathering, wireless technology selection; noise modelling and synthesis; real noise capture and analysis to validate the chosen noise model; high-frequency fractal noise emulation in hardware; the use of a novel noise injection method for empirical work; and the conducting of a controlled synthetic noise-to-wireless node performance evaluation to obtain performance measure in the form of packet error rate (PER). Performance data in terms of PER versus signal-to-noise ratio (SNR) for various nodes separation have been collected. There were three significant findings: the obtained performance curves follow the standard 'S' trend; for a specific desired reliability (denoted by a certain PER), the SNR at the transmitter needs to be boosted as the correlation of the noise being present increases; and the maximum distance between nodes separation for a certain reliability to be achieved depends exponentially with the transmitter‟s SNR. The relationship in the third finding assists in placement of wireless nodes, which in turn can determine the minimum amount of wireless nodes required for an industrial system to reach the desired system reliability, thus boasting network cost saving.
|
50 |
The performance of multiple hypothesis testing procedures in the presence of dependenceClarke, Sandra Jane January 2010 (has links)
Hypothesis testing is foundational to the discipline of statistics. Procedures exist which control for individual Type I error rates and more global or family-wise error rates for a series of hypothesis tests. However, the ability of scientists to produce very large data sets with increasing ease has led to a rapid rise in the number of statistical tests performed, often with small sample sizes. This is seen particularly in the area of biotechnology and the analysis of microarray data. This thesis considers this high-dimensional context with particular focus on the effects of dependence on existing multiple hypothesis testing procedures. / While dependence is often ignored, there are many existing techniques employed currently to deal with this context but these are typically highly conservative or require difficult estimation of large correlation matrices. This thesis demonstrates that, in this high-dimensional context when the distribution of the test statistics is light-tailed, dependence is not as much of a concern as in the classical contexts. This is achieved with the use of a moving average model. One important implication of this is that, when this is satisfied, procedures designed for independent test statistics can be used confidently on dependent test statistics. / This is not the case however for heavy-tailed distributions, where we expect an asymptotic Poisson cluster process of false discoveries. In these cases, we estimate the parameters of this process along with the tail-weight from the observed exceedences and attempt to adjust procedures. We consider both conservative error rates such as the family-wise error rate and more popular methods such as the false discovery rate. We are able to demonstrate that, in the context of DNA microarrays, it is rare to find heavy-tailed distributions because most test statistics are averages.
|
Page generated in 0.0707 seconds