• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 30
  • 14
  • 11
  • 8
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 172
  • 23
  • 22
  • 21
  • 20
  • 18
  • 17
  • 16
  • 15
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Efficacy of sheep erythropoietin in histidine-deficient rats

Rao, Naidu Venkat. January 1961 (has links)
Call number: LD2668 .T4 1961 R35
32

Exploration of early-life candidate biomarkers for childhood asthma using antibody arrays

Xu, Haili, Radabaugh, Timothy, Lu, Zhenqiang, Galligan, Michael, Billheimer, Dean, Vercelli, Donata, Wright, Anne L., Monks, Terrence J., Halonen, Marilyn, Lau, Serrine S. 11 1900 (has links)
Background: Proteomic approaches identifying biomarkers have been applied to asthma to only a very limited extent. Methods: With an antibody array (RayBiotech, Norcross, GA, USA), the relative intensity and rank differences of 444 proteins were compared in 24 plasma samples obtained at age 3, 11 from children with and 12 without asthma diagnoses at ages 5 and 9. Protein candidates identified by antibody array were quantitated by ELISA in an enlarged sample. Proteins found to differentiate children with and without asthma were also examined for association with known Year 1 asthma risk factors, eczema, and wheeze. Results: In the antibody array, four proteins had rank differences between asthma and non-asthma groups (FDR < 0.1). By ELISA, mean log (+/- s.e.m.) erythropoietin (EPO) level (IU/l) was lower (0.750 +/- 0.048 vs. 0.898 +/- 0.035; p = 0.006) and mean (+/- s.e.m.) soluble GP130 (sGP130) level (ng/ml) was higher in the asthma vs. the non-asthma group (302 +/- 13 vs. 270 +/- 8; p = 0.041). The other 2 array proteins (galactin-3 and eotaxin-3) did not differ by ELISA by asthma. EPO related to the asthma risk factor, first year eczema, whereas sGP130 related to first year wheeze. Conclusions: Through two independent assessments, age 3 plasma levels of EPO and sGP130 were found related to childhood asthma.
33

Transkriptionelle Regulation des Erythropoietin-Rezeptor-Gens im zentralen Nervensystem

Wallach, Iwona 19 October 2007 (has links)
Derzeit wird die Anwendung von Erythropoietin (Epo) zur Neuroprotektion in präklinischen und klinischen Studien intensiv untersucht. Für die Neuroprotektion ist die Regulation des Erythropoietin-Rezeptors (EpoR) in neuronalen Zellen von hoher Relevanz. In dieser Arbeit wurden die transkriptionellen Mechanismen der EpoR-Regulation in humanen Neuroblastom-Zellen SH-SY5Y mit neuronalem Phänotyp untersucht. Da der hämatopoietische Transkriptionsfaktor GATA-1 die EpoR-Transkription in erythroiden Vorläuferzellen in Kooperation mit Sp1 stimuliert, wurde die Rolle der in neuronalen Vorläuferzellen exprimierten GATA-Transkriptionsfaktoren bei der EpoR-Expression untersucht. Es wurde eine in vitro Bindung von GATA-2, -3 und -4 an zwei Motive in der EpoR 5’-flankierenden Region (-274/-271; -47/-44) nachgewiesen. In Reportergen-Assays zeigten diese Genabschnitte eine bis zu 4,8-fache Aktivitätssteigerung bei Überexpression von GATA-2, -3 oder -4. Die endogene EpoR mRNA-Expression wurde dadurch aber nicht erhöht. Hypoxie (2% O2, 3 d) erhöhte die EpoR-Expression signifikant (1,8-fach, p < 0,01), wobei überexprimierte GATA-Transkriptionsfaktoren diesen Effekt nicht weiter steigerten. Die Gabe von Epo (5 U/ml, 3 d) hatte weder unter Normoxie noch unter Hypoxie einen Einfluss auf die EpoR-Expression. Die Promotoraktivität der Reporterkonstrukte wurde durch Mutation der GATA-Bindungsstellen nicht verändert, jedoch bei mutierter Sp1-Bindungsstelle inhibiert. Ein Fragment der 5’-flankierenden Region (-449/-285), das ein Cluster von Bindungsstellen für unterschiedliche Transkriptionsfaktoren enthält, zeigte die stärkste Promotoraktivität und rekrutierte offenbar die RNA-Polymerase II. In unserem Modell spielen die GATA-Faktoren keine direkte Rolle für die EpoR-Genregulation in neuronalen Vorläuferzellen. Die EpoR mRNA-Expression wird eher durch einen Komplex aus verschiedenen Transkriptionsfaktoren reguliert, der an eine 5’ des minimalen Promotors liegende DNA-Region zu binden scheint. / Since the use of erythropoietin (Epo) as neuroprotective agent is currently intensively studied in preclinical and clinical trials, regulatory mechanisms of the erythropoietin receptor (EpoR) in neuronal cells are of particular interest. In this study, the transcriptional mechanisms of EpoR regulation were analyzed in human neuroblastoma-derived SH-SY5Y cells, which exhibit a neuronal phenotype. Considering that the hematopoietic transcription factor GATA-1 stimulates EpoR transcription in cooperation with Sp1 in erythroid progenitors, the role of other GATA family members expressed in neuronal precursor cells were studied. In vitro, GATA-2, -3 and -4 were found to bind to two consensus motifs within the EpoR 5’-flanking region (-274/-271 and -47/-44). In reporter gene assays, these regions showed an up to 4.8-fold induction if GATA-2, -3 or -4 were overexpressed. However, forced expression of GATA-2, -3 and -4 did not enhance endogenous EpoR mRNA expression. Under hypoxia (2% O2, 3 d), EpoR expression was significantly upregulated in SH-SY5Y cells (1.8-fold, p < 0.01), but not further increased by the additional overexpression of the GATA factors. Incubation of the SH-SY5Y cells with recombinant Epo (5 U/ml, 3 d) had no effect on the EpoR expression under normoxia or hypoxia. The promoter activities of the reporter constructs were not changed by mutations in the GATA sites, but abolished by mutations of Sp1 binding sites. A fragment (-449/-285) of the 5’-flanking region that contains a cluster of binding sites for various transcription factors showed strongest promoter activity and was obviously directing the recruitment of RNA polymerase II. We conclude that GATA factors do not play a major role in regulating EpoR expression in our model for neuronal precursor cells. EpoR mRNA expression is rather regulated by a complex of various transcription factors, which may bind to a region upstream of the minimal promoter.
34

Vaccinia virus mediated expression of human erythropoietin in colonized human tumor xenografts results in faster tumor regression and increased red blood cell biogenesis in mice / Expression von humanem Erythropietin in Vaccinia Virus-kolonisierten Tumorxenograftmodellen fördert die Tumorregression und die Biogenese roter Blutzellen

Nguyen, Hoang Duong January 2012 (has links) (PDF)
Cancer-related anemia is prevalent in cancer patients. Anemia negatively affects normal mental and physical function capacity with common symptoms s like fatigue, headache, or depression. Human erythropoietin (hEPO), a glycoprotein hormone regulating red blood cell formation, is approved for the treatment of cancer-related anemia. It has shown benefits in correcting anemia, and subsequently improving health-related quality of life and/or enhancing radio-, and chemotherapy. Several recent clinical trials have suggested that recombinant hEPO (rhEPO) may promote tumor growth that raises the questions concerning the safety of using rhEPO for cancer treatment. However in others, such effects were not indicated. As of today, the direct functional effect of rhEPO in tumor models remains controversial and needs to be further analyzed. Based on the GLV-1h68 backbone, the hEPO-expressing recombinant VACV strains (EPO-VACVs) GLV-1h210, GLV-1h211, GLV-1h212 and GLV-1h213 were generated by replacing the lacZ expression cassette at the J2R locus with hEPO under the control of different vaccinia promoters p7.5, pSE, pSEL, pSL, respectively. Also, GLV-1h209 was generated, which is similar to GLV-1h210 but expresses a mutated non-functinal EPO (R103A). The EPO-VACV strains were characterized for their oncolytic efficacy in lung (A549) cancer cells in culture and tumor xenografts. Concomitantly, the effects of locally expressed hEPO in tumors on virus replication, host immune infiltration, tumor vascularization and tumor growth were also evaluated. As expected, EPO-VACVs enhanced red blood cell (RBC) formation in xenograft model. The number of RBCs and hemoglobin (Hb) levels were significantly increased in EPO-VACVs-treated mice compared to GLV-1h68-treated or untreated control mice. However, the mean size of RBC or Hb content per RBC remained normal. Furthermore, over-expression of hEPO did not significantly affect numbers of lymphocytes, monocytes, leucocytes or platelets in the peripheral blood stream. The expression of hEPO in colonized tumors of mice treated with EPO-VACVs was demonstrated by immunohistological staining. Interestingly, there were 9 - 10 hEPO isoforms detected either in tumors, cells, or supernatant, while 3-4 basic isoforms were missing in blood serum, where only six hEPO isoforms were found. Tumor-bearing mice after treatment with EPO-VACVs showed enhanced tumor regression compared to GLV-1h68. The virus titers in tumors in EPO-VACVs-treated mice were 3-4 fold higher compared to GLV-1h68-treated mice. Nevertheless, no significant difference in virus titers among EPO-VACVs was found. The blood vessels in tumors were significantly enlarged while the blood vessel density remained unchanged compared to the GLV-1h68 treated mice, indicating that hEPO did not affect endothelial cell proliferation in this model. Meanwhile, rhEPO (Epoetin alfa) alone or in combination with GLV-1h68 did not show any signs of enhanced tumor growth when compared to untreated controls and GLV-1h68 groups, while doses used were clinical relevant (500 U/kg). These findings suggested that hEPO did not promote angiogenesis or tumor growth in the A549 tumor xenograft model. Human EPO has been reported to function as an immune modulator. In this study, however, we did not find any involvement of hEPO in immune cytokine and chemokine expression or innate immune cell infiltration (leucocytes, B cells, macrophages and dendritic cells) into infected tumors. The degree of immune infiltration and cytokine expression was directly correlated to the number of virus particles. Increased virus replication, led to more recruited immune cells and secreted cytokines/chemokines. It was proposed that tumor regression was at least partially mediated through activation of innate immune mechanisms. In conclusion, the novel EPO-VACVs were shown to significantly increase the number of RBCs, Hb levels, and virus replication in tumors as well as to enhance tumor regression in the A549 tumor xenograft model. Moreover, locally expressed hEPO did not promote tumor angiogenesis, tumor growth, and immune infiltration but was shown to causing enlarged tumoral microvessels which facilitated virus spreading. It is conceivable that in a possible clinical application, anemic cancer patients could benefit from the EPO-VACVs, where they could serve as “wellness pills” to decrease anemic symptoms, while simultaneously destroying tumors. / Blutarmut stellt eine häufige Begleiterscheinung in Krebspatienten dar. Anämie beeinträchtigt die normale mentale und körperliche Funktionsfähigkeit. Menschliches Erythropoetin (hEPO), welches die Bildung roter Blutzellen reguliert, ist klinisch zur Behandlung von Krebs-induzierter Blutarmut zugelassen. Wenn es zur Behandlung von Anämie benutzt wird, verbessert es den Gesundheitszustand sowie Bestrahlungs- und Chemotherapie. Verschiedene klinische zeigten, dass rekombinantes hEPO (rhEPO) das Tumorwachstum anregen kann, was die Frage nach Sicherheit der Anwendung von rhEPO aufbringt. In anderen Studien hingegen, gab es keine Anzeichen für eine Tumorwachstum anregenden Wirkung oder für ein Eingreifen in krebsspezifische Signalwege. Verschiedene hEPO exprimierende rekombinante VACV Stämme (EPO-VACV) wurden hergestellt, GLV-1h210, GLV-1h211 und GLV-1h213, in welchen die lacZ Expressionskassette im J2R Lokus durch das hEPO Gen unter der Kontrolle von verschiedenen Promotoren, p7.5, pSE und pSL, ersetzt wurde. Ebenfalls wurde GLV-1h209 hergestellt, welches ähnlich zu GLV-1h210 ist, jedoch ein mutiertes und nicht-funktionelles EPO Protein (R103A) exprimiert. Alle EPO-VACV Stämme wurden bezüglich ihrer onkolytischen Funktion in Zellkulturexperimenten sowie in in vivo Tumormodellen charakterisiert. Die Expression von zwei Markergene war in Zellkultur sowie in Tumorxenograften für alle EPO-VACV vergleichbar mit der des parentalen GLV-1h68 Virus. Unterschiede in hEPO Transkription und Translation der EPO-VACV war deutlich abhängig von der Promotorstärke und stieg an von p7.5, über pSE und pSL zu pSEL 12 h nach Infektion von Zellen. Darüberhinaus hatte die Insertion von hEPO in das virale Genom keinen Einfluss auf Replikation oder Zytotoxizität aller EPO-VACV in A549 oder NCI-H1299 Zelllinien, obwohl zu frühen Zeitpunkten (24-48 hpi) die Replikation der EPO-VACV etwas höher war, als die des GLV-1h68 Virus. Die A549 Zellen war zugänglicher für virale Infektion durch alle untersuchten Viren als die NCI-H1299 Zellen. Von besonderem Interesse ist, dass hypoxische Bedingungen (2% O2) die Replikation und damit Expression des Markergens gusA, sowie Zytotoxizität für alle untersuchten VACV unabhängig von hEPO Expression verlangsamte. Alle EPO-VACV erhöhen die Bildung von roten Blutzellen (RBC) in Mausmodellen. Anzahl und RBCs sowie Hämoglobin (Hb) Level waren signifikant erhöht im Vergleich zu unbehandelten oder GLV-1h68 behandelten Mäusen. Die Durchschnittsgröße einer RBC sowie der Hämoglobinanteil hingegen waren unverändert. Darüberhinaus hatte die Expression von hEPO keinen signifikanten Einfluss auf Lymphozyten, Monozyten, Leukozyten oder Blutplättchen im peripheren Blut. Die Expression von hEPO in EPO-VACV kolonisierten Tumoren wurde durch immunohistologische Färbungen bestätigt. Interessanterweise konnten 9-10 EPO Isoformen in Tumoren, Zellen oder Zellüberständen gefunden werden, während im Blutserum 3-4 basische Isoformen fehlten und nur 6 Isoformen auftraten. Tumortragende Mäuse, die mit EPO-VACV behandelt wurden, wiesen im Vergleich zu GLV-1h68 behandelten Mäusen eine erhöhte Tumorregression auf. Ausserdem waren virale Titer in EPO-VACV behandleten Tumoren 3-4 fach höher also in denen, die mit GLV-1h68 behandelt wurden. Kein signifikanter Unterschied hingegen wurde zwischen viralen Titern der verschiedenen EPO-VACV in Tumoren gefunden. Tumorale Blutgefäße waren im Vergleich zu GLV-1h68 behandelten Mäusen deutlich vergrößert, wohingegen die Dichte an Blutgefäßen unverändert war, was andeuted, dass keine Proliferation von Endothelzellen angeregt wurde. Rekombinant hergestelltes Epoetin alfa in klinisch relevanten Dosen allein oder in Kombination mit GLV-1h68 hatte keinen Einfluss auf Verbesserung der Tumorregression verglichen mit unbehandelten oder GLV-1h68 behandelten Mäusen. Diese Ergbnisse legen nahe, dass weder Angiogenese noch Tumorwachstum durch hEPO im A549 Tumormodell angeregt wurde. In dieser Studie hingegen wurde kein Einfluss von hEPO im Bezug auf Zytokin- oder Chemokinexpression sowie Immunzellinfiltration in Tumore nachgewiesen. Das Ausmass an Immunzellinfiltratrion und Zytokinexpression konnte direkt mit der Anzahl an viralen Partikeln korreliert werden. Es wurde angenommen, dass Tumorregression zumindest teiweise durch eine Aktivierung des angeborenen Immunsystems bedingt ist. Zusammenfassend kann gesagt werden, dass durch die neuartigen EPO-VACV die Bildung von RBC, die Level an Hb und die virale Replikation signifikant angeregt wurden sowie eine erhöhte Tumorregression im Xenograftmodell auftrat. Darüberhinaus leitete lokal exprimiertes hEPO keine Tumorangiogenese oder Tumorwachstum ein, aber führte zu einer Vergrößerung von Tumorblutgefäßen, was die virale Ausbreitung erleichtern könnte. Es ist vorstellbar, dass anämische Patienten von einer möglichen klinischen Anwendung der EPO-Viren profitieren würden.
35

Der Zusammenhang zwischen endogenen Erythropoietin-Spiegeln und Mortalität bei niereninsuffizienten Patienten mit Typ 2-Diabetes / Endogenous erythropoietin and the association with inflammation and mortality in diabetic chronic kidney disease

Koljaja-Batzner, Angelika January 2015 (has links) (PDF)
Wir haben 215 Typ 2-Diabetiker mit begleitender chronischer Nierenerkrankung, die noch keine Dialysebehandlung erhalten hatten, über maximal 7 Jahre nachverfolgt. Dabei konnten von allen Studienteilnehmern Follow-up-Daten erhoben werden. Ziel dieser Untersuchung war es, einen Zusammenhang zwischen erhöhten endogenen EPO-Spiegeln im Blut und einer erhöhten Mortalität zu eruieren. Diesen Zusammenhang konnten wir sowohl in der univariaten Analyse als auch nach Korrektur für etablierte Risikofaktoren wie Alter, vorangegangene kardiovaskuläre Ereignisse, erhöhte CRP-Spiegel und niedrige Albumin-Blutwerte zeigen. Somit ist ein erhöhter endogener EPO-Spiegel ein unabhängiger Risikofaktor für die Mortalität. Unsere Untersuchungen zeigen sogar, dass eine einzelne Messung des EPO-Spiegels einen höheren prädiktiven Wert bezüglich des Risikos zu versterben besitzt als eine einzelne CRP-Messung. / In this cohort study, we aimed to identify factors associated with endogenous EPO levels and investigate their relation to all-cause mortality. Between 2004 and 2005, 215 patients with type 2 diabetes were enrolled. Exclusion criteria included end stage renal disease (ESRD) and any form of anemia therapy. Patents were followed for up to 7,0 years. Forty-one patients died. Elevated EPO levels were independently associated with elevated C-reactive protein, low ferritin, and hypertension, in a multivariate model that also included age, cardiovascular disease, kidney function, albumin, cholesterol, and hemoglobin. Higher EPO levels were independently predictive for mortality, as were age, low levels of albumin, and cardiovascular disease. In diabetic patients with CKD, elevated endogenous EPO levels were predictive for mortality and were related mainly to markers of inflammation, independent of kidney function, and despite low hemoglobin levels.
36

Erythropoietin Signaling in Pancreatic Beta Cells in Homeostasis and in Models of Type 1 and Type 2 Diabetes

Choi, Diana 23 February 2011 (has links)
Diabetes mellitus is a complex disorder characterized by chronic hyperglycemia and vascular complications leading to significant morbidity and mortality. The common feature in all forms of diabetes is the insufficient functional β-cell mass to maintain euglycemia; therefore, the promotion of β-cell survival and growth is a fundamental goal for diabetes prevention and treatment. Evidence has suggested that erythropoietin (EPO) exerts cytoprotective effects on non-erythroid cells. However, the in vivo role of EPO on the pancreatic β cells has not been evaluated to date. We hypothesized that EPO would have direct cytoprotective effects on the pancreatic β cells and provide protection against experimental models of diabetes. In Chapter IV, we report that recombinant human erythropoietin (rHuEPO) administration provided protection against diabetes development in the streptozotocin (STZ)-induced and db/db mice, models of type 1 and type 2 diabetes, respectively, through anti-apoptotic, proliferative and angiogenic effects within the islets. Next, we show in Chapter V, using β cell-specific EPO-R and JAK2 knockout (KO) mice, that these cytoprotective effects of EPO resulted from direct biological effects on the β cells, and that JAK2 is its essential intracellular mediator. We also show that endogenous EPO or JAK2 in β cells had no essential role in determining β-cell development or homeostasis. Given that epo is a target gene of the hypoxia inducible factor (HIF) pathway, we hypothesized that deletion of von Hippel Lindau (VHL), a negative regulator of this pathway, in the β cells would lead to enhanced transcription of HIF-target genes, which are largely pro-survival, and lead to enhanced β-cell mass and function. Contrary to our hypothesis, in Chapter VI, our results show that the epo gene is not expressed in islets. Furthermore, β cell-specific VHL KO mice were glucose intolerant due to impaired β-cell function and mass, which we were able to rescue with rHuEPO treatment. Our results demonstrate that EPO exerts direct biological effects on the pancreatic β cells. Further understanding of the biology of EPO may hold promise for the development of a potential novel strategy for diabetes prevention and treatment.
37

Erythropoietin Signaling in Pancreatic Beta Cells in Homeostasis and in Models of Type 1 and Type 2 Diabetes

Choi, Diana 23 February 2011 (has links)
Diabetes mellitus is a complex disorder characterized by chronic hyperglycemia and vascular complications leading to significant morbidity and mortality. The common feature in all forms of diabetes is the insufficient functional β-cell mass to maintain euglycemia; therefore, the promotion of β-cell survival and growth is a fundamental goal for diabetes prevention and treatment. Evidence has suggested that erythropoietin (EPO) exerts cytoprotective effects on non-erythroid cells. However, the in vivo role of EPO on the pancreatic β cells has not been evaluated to date. We hypothesized that EPO would have direct cytoprotective effects on the pancreatic β cells and provide protection against experimental models of diabetes. In Chapter IV, we report that recombinant human erythropoietin (rHuEPO) administration provided protection against diabetes development in the streptozotocin (STZ)-induced and db/db mice, models of type 1 and type 2 diabetes, respectively, through anti-apoptotic, proliferative and angiogenic effects within the islets. Next, we show in Chapter V, using β cell-specific EPO-R and JAK2 knockout (KO) mice, that these cytoprotective effects of EPO resulted from direct biological effects on the β cells, and that JAK2 is its essential intracellular mediator. We also show that endogenous EPO or JAK2 in β cells had no essential role in determining β-cell development or homeostasis. Given that epo is a target gene of the hypoxia inducible factor (HIF) pathway, we hypothesized that deletion of von Hippel Lindau (VHL), a negative regulator of this pathway, in the β cells would lead to enhanced transcription of HIF-target genes, which are largely pro-survival, and lead to enhanced β-cell mass and function. Contrary to our hypothesis, in Chapter VI, our results show that the epo gene is not expressed in islets. Furthermore, β cell-specific VHL KO mice were glucose intolerant due to impaired β-cell function and mass, which we were able to rescue with rHuEPO treatment. Our results demonstrate that EPO exerts direct biological effects on the pancreatic β cells. Further understanding of the biology of EPO may hold promise for the development of a potential novel strategy for diabetes prevention and treatment.
38

Interrogation of EpoR Fidelity in Myelodysplastic Syndrome Hematopoiesis and Stabilization by the Immunomodulatory Agent, Lenalidomide

Mcgraw, Kathy Lynn 01 January 2013 (has links)
Myelodysplastic syndromes (MDS) include a spectrum of stem cell malignancies characterized by ineffective hematopoiesis and predisposition to acute myeloid leukemia (AML) transformation. Patients are predominantly older (greater than 60 years old), with progressive cytopenias resulting from ineffective and cytologically dysplastic hematopoiesis. MDS subtypes are classified by morphologic features and bone marrow blast percentage, as well as cytogenetic pattern, as is the case for deletion 5q MDS. Interstitial deletion of the long arm of chromosome 5, del(5q), is the most common chromosomal abnormality in patients with MDS, and the 5q- syndrome, represents a distinct subset of del(5q) MDS characterized by an isolated deletion, megakaryocyte dysplasia, hypoplastic anemia, and an indolent natural history. MDS risk stratification is most commonly based on the International Prognostic Scoring System (IPSS) with survival outcomes ranging from a few months to many years based on risk factors. There are several therapeutic options for MDS including hematopoietic growth factors, immunosuppressive therapy, azanucleosides, and allogeneic stem cell transplant, however, there is still a need for more effective treatment options, particularly targeted therapeutics. One of the most effective treatments for MDS is selective for del(5q) MDS, and is the second generation immunomodulatory agent, lenalidomide (LEN). LEN is an analog of the known teratogen, thalidomide, and has broad biological effects including selective cytotoxicity to del(5q) clones, activation of T-cells, and expansion of erythroid precursors. In patients with del(5q) MDS, LEN is effective in up to 75% of patients, however, 50% of patients will become resistant within 2-3 years of treatment response. Studies in normal hematopoietic progenitors have shown that LEN induces expansion of the primitive erythroid precursors, which our laboratory has shown is accompanied by sensitization of progenitors to ligand induced erythropoietin receptor (EpoR) signaling. This sensitization is evidenced by increased and prolonged activation of the Signal Transducer and Activator of Transcription 5 (STAT5), compared to Epo stimulation alone. Although EpoR signaling is augmented by LEN, the exact mechanisms by which this is mediated to result in erythroid expansion are not fully characterized. In del(5q) MDS, we have shown that LEN selectively suppresses del(5q) clones via inhibition of the haploinsufficient phosphatases Cdc25c and PP2a, as well as stabilizing the human homolog of the murine double minute-2 protein (MDM2) to decrease expression of the tumor suppressor, p53, however, the mechanisms of action of LEN in non-del(5q) MDS remains elusive. Although most anemic MDS patients have normal or elevated endogenous levels of Epo, as well as comparable levels of progenitor EpoR density relative to healthy individuals, the biologic pathology underlying the impaired EpoR signaling in MDS is poorly defined. Recent reports have shown that membrane microdomains are important for T-cell, c-kit, and integrin signaling, however, there have been no reports on EpoR membrane localization. Lipid rafts are discrete membrane entities that provide platforms by which receptors aggregate and initiate downstream signaling. Furthermore, reports have indicated that there is a decrease in lipid raft density in GM-CSF primed MDS neutrophils, that consequently impaired production of reactive oxygen species (ROS) after fMLP stimulation, suggesting a role of rafts in MDS disease biology. Based on the role of rafts in signaling, and potential role in MDS pathogenesis, we sought to determine whether there was specific membrane localization of EpoR to the raft fractions, and whether disruption of rafts in MDS erythroids could impair EpoR signaling. To address this, we first examined the membrane localization of EpoR on the cell surface. We show here that EpoR translocates to lipid rafts in both erythroid progenitor cell lines as well as primary progenitor cells after stimulation by Epo. Furthermore, we found that Epo stimulation increases the assembly of lipid rafts, as well as the aggregation of rafts on the cell surface. Epo stimulation not only promoted the recruitment of EpoR into the raft fractions, but also downstream signaling intermediates such as Janus kinase 2 (Jak2), STAT5, and Lyn kinase. Moreover, a negative regulator of EpoR signaling, the CD45 tyrosine phosphatase, was redistributed outside of raft fractions after Epo stimulation, potentially enhancing receptor signal competence. Furthermore, disruption of lipid rafts by depletion of membrane cholesterol with MâCD (methyl-β-cyclodextrin) inhibited EpoR signaling in both cell lines and primary bone marrow progenitor cells. Additionally, we found that inhibition of Rho-associated, coiled-coil containing protein kinase (ROCK) and/or Ras-related C3 botulinium toxin substrate 1 (Rac1), blocked the recruitment of the receptor into the raft fractions indicating a critical role of these GTPases, and associated proteins, in the transport and localization of EpoR into raft microdomains. We next asked whether LEN could alter lipid raft assembly in erythroid precursors in the absence of Epo. LEN not only induced raft formation and aggregation but also increased F-actin polymerization. Similar to Epo stimulation, LEN alone was able to induce the recruitment of EpoR, Jak2, and STAT5 into raft fractions. Additionally, CD45 was redistributed outside of raft fractions after LEN treatment. Similarly, inhibition of ROCK blocked LEN induced raft formation and F-actin polymerization, indicating that LEN utilized effectors shared by Epo. Furthermore, LEN was able to increase raft density in raft deficient primary MDS erythroid progenitors. These data demonstrate that LEN may enhance erythroid expansion via induction of EpoR signaling competent raft platforms, to enhance survival and differentiation transcriptional response. Recently, ribosomal protein (RP), S-14, gene (RPS14) haplodeficiency was found to be a key determinant of the hypoplastic anemia in del(5q) MDS. Allelic loss of RPS14 compromises ribosome assembly, thereby causing nucleolar stress and release of free RPs that bind to and promote the degradation of MDM2, the principal negative regulator of p53. As a result, the accumulation of RPs causes lineage restricted stabilization of p53 in erythroid precursors. Our laboratory and colleagues confirmed that cellular p53 expression levels were elevated in del(5q) erythroid precursors, and that LEN decreased expression in responding patients. However, at the time of LEN treatment failure, p53 expression was again elevated at levels exceeding those at baseline. These results suggest that LEN is initially able to reverse p53 accumulation levels and that this action may be a mechanism by which LEN is selectively cytotoxic to del(5q) clones. Subsequent studies showed that LEN inhibits the cereblon E3 ubiquitin ligase complex, the newly discovered target of LEN. Cereblon has been reported to be the principal protein involved in thalidomide induced teratogenicity. Furthermore, the cytotoxic activity of LEN in multiple myeloma is dependent on cereblon. Our laboratory found that LEN inhibits the auto-ubiquitination of MDM2, thereby stabilizing the protein, and promoting ubiquitination of and ultimately the degradation of p53. Additionally, we found that LEN blocked the binding of free ribosomal proteins to MDM2, which are liberated from the nucleosome by ribosomal stress from RPS14 haploinsufficiency, consequently stabilizing the E3-ubiquitin ligase and fostering p53 degradation. In non-del(5q) MDS there is no cytotoxicity of MDS clones by LEN, suggesting an alternative method of erythropoiesis rescue. Although we know that LEN promotes the formation of signaling platforms, and recruitment of EpoR, we wished to determine whether there was an effect of LEN on EpoR expression, as EpoR expression is controlled through ubiquitination and proteasomal degradation. Treatment of erythroid progenitor cell lines and primary erythroid precursors with LEN increased cellular expression of Jak2-associated EpoR in a concentration dependent manner. There was no change in mRNA expression, supporting a post transcriptional mechanism. We then investigated whether receptor up-regulation was limited to EpoR, or included other cytokine receptors. We found that LEN induced expression of another Jak2 associated Type I receptor, IL3-R, but did not alter cellular expression of c-kit, a Type II cytokine receptor. Because Type I cytokine receptor turnover is regulated by a shared E3-ubiquitin ligase, and LEN inhibited both MDM2 and cereblon, we evaluated the effects of LEN on the E3-ubiquitin ligase, Ring Finger Protein-41 (RNF41), which regulates steady state or ligand independent, Jak2 associated Type I receptor internalization. We found that LEN inhibited the ubiquitination activity of RNF41, ultimately stabilizing EpoR membrane residence and increasing expression. In summary, MDS patients display ineffective hematopoiesis likely in part to decreased lipid raft assembly. Stimulation by Epo, or treatment by LEN, not only induced raft formation, but also induced the recruitment of both growth factor receptor, and downstream signaling intermediates into raft fractions to enhance EpoR signal fidelity. We have shown here two methods by which LEN may augment EpoR signaling. First, LEN increases lipid rafts and promotes recruitment of signaling effectors. Second, LEN increases and stabilizes the expression of EpoR through inhibition of the E3 ubiquitin ligase, RNF41. Therefore, we suggest here that LEN may have broad E3 ubiquitin ligase inhibitory effects. These data also indicate that lipid raft upregulation by LEN is mediated through GTPases, suggesting that GTPase activation may also occur via inhibition of specific E3 ubiquitin ligases, a question to be addressed in future studies.
39

The EPO/EPOR system in the brain: Search for mechanisms of action / The EPO/EPOR system in the brain: Search for mechanisms of action

Dahm, Liane 08 May 2013 (has links)
No description available.
40

Indirekte Bestimmung des Erythrozytenalters bei männlichen Sportlern

Robinson, Yohan January 2005 (has links)
Zugl.: Berlin, Charité, Univ.-Med., Diss., 2005

Page generated in 0.4374 seconds