• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trace de Dixmier d'opérateurs de Hankel / Dixmier trace of Hankel operators

Tytgat, Romaric 02 December 2013 (has links)
Nous nous intéressons aux opérateurs de Hankel $H_{bar{f}}$ de symbole anti holomorphe $bar{f}$ et regardons l'espace de Dixmier $mathcal{D}^{p}$ associé ($pgeq1$), c'est à dire l'ensemble des $f$ tel que $|H_{bar{f}}|^{p}$ soit dans l'idéal de Macaev $mathcal{S}^{+}_{1}$. Notre approche est de voir l'espace de Dixmier comme une certaine limite des classes de Schatten. Quand $f in mathcal{D}^{p}$, nous étudions $Tr_{omega}(|$H_{bar{f}}$|^{p})$ la trace de Dixmier de $|H_{bar{f}}|^{p}$. Nous redémontrons certains résultats classiques quand $f$ est holomorphe sur le disque alors que nous donnons de nouveaux résultats quand $f$ est entière. Nous utilisons notre méthode pour étudier l'espace de Dixmier du petit opérateur de Hankel, des opérateurs de Toeplitz $T_{varphi}$ ($varphi$ définie sur le disque ou sur le plan complexe tout entier) ainsi que pour l'opérateur de composition. / We study Hankel operators $H_{bar{f}}$ with anti holomorphic symbol $bar{f}$ and we are interested to the Dixmier space $mathcal{D}^{p}$ ($pgeq1$), the set of functions $f$ such that $|H_{bar{f}}|^{p} in mathcal{S}^{+}_{1}$ the Macaev ideal. We look Dixmier space as a limit of Schatten class. When $f in mathcal{D}^{p}$, we study $Tr_{omega}(|$H_{bar{f}}$|^{p})$ the Dixmier trace of $|H_{bar{f}}|^{p}$. We have different results when $f$ is an entire or a holomorphic function of the unit disk in the complex plan. We study also the Dixmier space of the little Hankel operator, Toeplitz operator and composition operator.
2

Opérateurs et semi-groupes d’opérateurs sur des espaces de fonctions holomorphes : Applications à la théorie de l’universalité / Operators and operator semigroups on spaces of holomorphic functions : applications to the theory of universality

Célariès, Benjamin 21 June 2019 (has links)
Les travaux de cette thèse relèvent du domaine de la théorie des opérateurs, et se situent à l'interface de l'analyse complexe, de la théorie des semi-groupes et de la théorie de l'universalité. Le premier résultat principal de cette thèse relève de l'étude des opérateurs de composition sur des espaces de fonctions holomorphes : nous déterminons le spectre d'un opérateur de composition par un symbole de Koenigs sur l'espace des fonctions holomorphes sur le disque unité, et en déduisons des informations sur la forme générale du spectre des opérateurs de composition par un symbole de Koenigs sur des espaces de Banach de fonctions holomorphes. L'outil principal que nous développons pour notre étude est une description des projections spectrales associées à ces opérateurs. Le second résultat principal de cette thèse relève de la théorie de l'universalité : nous étendons aux semi-groupes d'opérateurs la notion d'opérateur universel, et établissons l'existence d'un semi-groupe universel pour les semi-groupes quasi-contractifs en exhibant un semi-groupe sur un espace de fonctions holomorphes. Nous élargissons ensuite ce résultats aux semi-groupes d'opérateurs concaves / The works in this thesis address topics from operator theory and involves ideas and notions arising from complex analysis, the theory of operator semigroups and the theory of universality. The first main result of this thesis relates to the study of composition operators on spaces of holomorphic functions: we compute the spectrum of an operator of composition by a Koenigs's symbol acting on the space of holomorphic functions on the open unit disk, and derive from it the general description of the spectrum of composition operators on Banach spaces of holomorphic functions. The key tool we develop in this study is a description of spectral projections associated with such operators.The second main result of this thesis relates to the thoery of universality: we extend to operator semigroups the notion of universality. Then, we prove the existence of a universal semigroup for quasi-contractive operators semigroups. We then show a similar result for concave semigroups

Page generated in 0.1339 seconds