Spelling suggestions: "subject:"opérateurs dde hankel"" "subject:"opérateurs dde wankel""
1 |
Opérateurs de Hankel et théorie spectrale locale.Hachadi, Hicham 28 June 2013 (has links)
Cette thèse est constituée de deux volets principaux, le premier volet est consacré à l'étude des opérateurs de Hankel de symboles antiméromorphes, plus précisément, on s'intéresse à la possibilité d'obtenir des opérateurs de Hankel bornés (resp. compacts, dans les classes de Schatten) dont les symboles ne sont pas nécessairement des polynômes.Nous allons donner dans un premier temps, des conditions nécessaires et suffisantes pour que l'opérateur H_{f} définit sur une couronne dans le plan complexe, soit borné (resp. compact, dans la p-ième classe de Schatten) et nous allons traiter des exemples sur les quels nous montrons que les opérateurs de Hankel H_{f} et H_{Uf} sont bornés simultanément (resp. compacts, dans les classes de Schatten) si et seulement si f est un polynôme de Laurent et les conditions établies portent sur son L-degré.Le deuxième volet traite les propriétés spectrales en commun des opérateurs A et B vérifiant l'équation A²=ABA et B²=BAB. Nous allons généraliser les résultats de Christopher Schmoeger sur l'égalité des différents spectres de ces opérateurs, ensuite nous allons élargir le champ d'étude de ces opérateurs dans la direction de la théorie spectrale locale (Propriété de l'extension unique, décomposabilité...). / This thesis consists of two main parts, the first part is devoted to the study of Hankel operators of antiméromorphes symbols, more precisely, we are interested in the possibility of obtaining Hankel operators bounded (resp. compact, in Schatten classes) which the symbols are not necessarily polynomials.We will give in first step, the necessary and sufficient conditions for the operator H_ {f} defined on a ring in the complex plane is bounded (resp. compact in the p-th Schatten class) and we treat examples on which we show that the Hankel operators H_ {f} and H_ {Uf} are simultaneously bounded (resp. compact, in the Schatten classes) if and only if f is a Laurent polynomial and conditions set relate to its L-degree.The second part deals with common spectral properties of operators A and B satisfying the equation A ² = ABA and B ² = BAB. We will generalize the results of Christopher Schmoeger on equality different spectra of these operators, then we will expand the field of study of these operators in the direction of the local spectral theory (SVEP, Decomposability).
|
2 |
Trace de Dixmier d'opérateurs de Hankel / Dixmier trace of Hankel operatorsTytgat, Romaric 02 December 2013 (has links)
Nous nous intéressons aux opérateurs de Hankel $H_{bar{f}}$ de symbole anti holomorphe $bar{f}$ et regardons l'espace de Dixmier $mathcal{D}^{p}$ associé ($pgeq1$), c'est à dire l'ensemble des $f$ tel que $|H_{bar{f}}|^{p}$ soit dans l'idéal de Macaev $mathcal{S}^{+}_{1}$. Notre approche est de voir l'espace de Dixmier comme une certaine limite des classes de Schatten. Quand $f in mathcal{D}^{p}$, nous étudions $Tr_{omega}(|$H_{bar{f}}$|^{p})$ la trace de Dixmier de $|H_{bar{f}}|^{p}$. Nous redémontrons certains résultats classiques quand $f$ est holomorphe sur le disque alors que nous donnons de nouveaux résultats quand $f$ est entière. Nous utilisons notre méthode pour étudier l'espace de Dixmier du petit opérateur de Hankel, des opérateurs de Toeplitz $T_{varphi}$ ($varphi$ définie sur le disque ou sur le plan complexe tout entier) ainsi que pour l'opérateur de composition. / We study Hankel operators $H_{bar{f}}$ with anti holomorphic symbol $bar{f}$ and we are interested to the Dixmier space $mathcal{D}^{p}$ ($pgeq1$), the set of functions $f$ such that $|H_{bar{f}}|^{p} in mathcal{S}^{+}_{1}$ the Macaev ideal. We look Dixmier space as a limit of Schatten class. When $f in mathcal{D}^{p}$, we study $Tr_{omega}(|$H_{bar{f}}$|^{p})$ the Dixmier trace of $|H_{bar{f}}|^{p}$. We have different results when $f$ is an entire or a holomorphic function of the unit disk in the complex plan. We study also the Dixmier space of the little Hankel operator, Toeplitz operator and composition operator.
|
3 |
Propriétés spectrales des opérateurs de composition et opérateurs de Hankel / Spectral properties of the composition operators and Hankel operatorsMerghni, Lobna 31 January 2017 (has links)
Dans cette thèse nous nous intéressons aux opérateurs de composition sur les espaces de Hardy et Dirichlet et aux opérateurs de Hankel sur les espaces des fonction polyanalytiques. On s’'intéresse à l’'opérateur de composition sur les espaces de Dirichlet : $mathcal{D}_alpha=\left{f \in Hol(D): |f|_alpha^{2}=| f(0)| ^{2}+int_{D}| f'(z)| ^{2}dA_alpha(z)<infty \right}.$ La fonction de comptage généralisée de Nevanlinna associée à l'espace de Dirichlet $\mathcal{D}_\alpha$ est donnée par:$$ N_{\varphi,\alpha}(z):=\sum_{z=\varphi(w),{w\in\D}}(1-|w| )^\alpha,\qquad z\in\D.$$Nous étudions dans la première partie de ce travail la relation entre la fonction de comptage généralisée de Nevanlinna associée à $\varphi$ et la norme de ses ses puissances sur les espaces de Dirichlet. Nous aussi des examples d’'opérateurs de composition de Hilbert-Schmidt sur les espaces de Dirichlet. Nous étudions aussi l’'appartenance de $C_\varphi$ à la classe de Schatten en termes de la taille de l’ensemble de niveau et la norme de $\varphi^n$. Dans la deuxième partie nous considérons l’'espace de Fock-Bargmann des fonctions polyanalytiques, $f in F^n(mathbb{C})$. Nous montrons que si $f (z) = z^k\overline{z}^l$ avec $k, l \in \mathbb{N},$, alors l’'opérateur de Hankel $ H_{f}$ est borné sur $F^n(\mathbb{C})$ si et seulement si $\sup_{m,j}\|H_{f}e_{j, m}\|_{F^n(\mathbb{C})} < +\infty$.On montre aussi que si $f$ une fonction entière sur $\mathbb{C}$, alors l’'opérateur de Hankel $ H_{\bar f}$ est borné sur $F_n(C)$ si et seulement si f est un polynôme de degré au plus 1, et l’'opérateur de Hankel $ H_{\bar f}$ est compact sur $F_n(C)$ si et seulement si f est un polynôme constant. / In this thesis we focus on the composition operators on Hardy and Dirichlet spaces and Hankel operators on spaces of polyanalytiques functions. We are interested in the composition operator on the Dirichlet spaces: $$ mathcal{D}_alpha=left{ f in Hol(D): |f|_alpha^{2}=| f(0)|^{2}+int_{D}| f'(z)| ^{2}dA_alpha(z)<infty \right}. $$ The generalized Nevanlinna counting function associated to $ mathcal{D}_alpha $, is given by: $ N_{varphi,alpha}(z)=sum_{z=phi(w),{winD}}(1-|w| )^alpha,qquad zinDsetminus{phi(0)} .$ We study in the first part of this work the relationship between the generalized Nevanlinna counting function associated with $varphi$ and the norms of its iterated in the Dirichlet spaces. We give examples of Hilbert-Schmidt composition operators on the Dirichlet spaces. We study the composition operators on the Dirichlet spaces belong to Schatten class and the link with the size of contact points of its symbol with the unit circle. In the second part we consider the Bargmann-Fock space of polyanalytic functions, $f in F^n(mathbb{C})$. We prove that if $f (z) = z^koverline{z}^l$ with $k, l in mathbb{N},$ then the Hankel operator $ H_{f}$ is bounded on $F^n(mathbb{C})$ if and only if $sup_{m,j}|H_{f}e_{j, m}|_{F^n(mathbb{C})} < +infty$. We also establish that if $f $ an entire function on $mathbb{C}$, then the Hankel operator $ H_{bar f}$ is bounded on $F^n(mathbb{C})$ if and only if $f$ is a polynomial of degree at most $1,$ and the Hankel operator $ H_{bar f}$ is compact on $F^n(mathbb{C})$ if and only if $f$ is a constant polynomial.
|
Page generated in 0.0484 seconds