• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relations fonctionnelles entre les régulateurs de pluripotence et le cycle cellulaire dans les cellules souches embryonnaires pluripotentes / Functional relationships between pluripotency regulators and cell cycle in the pluripotent embryonic stem cells

Gonnot, Fabrice 27 September 2016 (has links)
Les cellules souches embryonnaires de souris (mESC) présentent un cycle cellulaire atypique caractérisé par l'absence d'une voie Rb fonctionnelle et la forte expression de la cycline E pendant toutes les phases du cycle cellulaire. En conséquence, les mESC sont constitutivement amorcées pour la réplication de l'ADN. Pour comprendre comment la cycline E, un régulateur clé de la transition de la phase G1 à S, est régulée dans les mESC, nous avons analysé la régulation transcriptionnelle de son gène Ccne1 par des facteurs de transcription du réseau de pluripotence naïve. Nous avons observé que les facteurs Esrrb, Klf4 et Tfcp2l1 se lient à la région du promoteur de Ccne1 sur plusieurs sites situés entre 0 et 1kb en amont du site d'initiation de la transcription. Un test luciférase nous a permis de monter qu'une mutation de ces sites de liaison diminue ou abolie l'activité transcriptionnelle du promoteur. De plus, la surexpression inductible à la doxycycline des facteurs Esrrb, Klf4 et Tfcp2l1 augment le niveau d'expression d'ARNm de Ccne1. Ces résultats suggèrent que Esrrb, Klf4 et Tfcp2l1 contrôlent l'expression de la cycline E. Ils mettent en évidence un lien direct entre le réseau de pluripotence naïve et la régulation du cycle mitotique dans les mESC. Nous avons utilisé le système rapporteur FUCCI pour étudier en fonction du cycle cellulaire l'expression des facteurs de transcription qui forment le réseau de pluripotence naïve. Nous avons observé que l'expression de Esrrb, Klf4, Tfcp2l1 et Nanog oscille au cours du cycle cellulaire avec une diminution de l'expression entre la phase G1 précoce et le début de S, puis une ré-augmentation entre le début de S et la phase G2/M. Ces résultats suggèrent que le réseau de pluripotence naïve est déstabilisé transitoirement lors du passage de la phase G1 à la phase S du cycle cellulaire / Mouse embryonic stem cells (mESCs) display an unorthodox cell cycle characterised by the lack of a functional Rb pathway and robust expression of cyclin E during all cell cycle phases. Therefore, mESCs are constitutively primed for DNA replication. To understand how cyclin E, a key regulator of the G1-to-S phase transition, is regulated in mESCs, we analysed the transcriptional regulation of Ccne1 by transcription factors of the naive pluripotency network. We observed that Esrrb, Klf4 and Tfcp2l1 bound the Ccne1 promoter region on multiple sites between 0 and 1kb upstream transcription start site. Disrupting the binding sites reduced or abolished transcriptional activity in a luciferase assay. Moreover, the doxycyclin-inducible expression of Essrb, Klf4 and Tfcp2l1 up-regulated the Ccne1 mRNA level. Taken together, these results strongly suggest that Essrb, Klf4 and Tfcp2l1 control Cyclin E expression and highlight a direct connection between the naïve pluripotency network and regulation of the mitotic cycle in mESCs. We used the FUCCI reporter system to study cell-cycle dependent expression of the transcription factors that form the naïve pluripotency network. Esrrb, Klf4, Tfcp2l1 and Nanog expression oscillated during the cell cycle with a down-regulated expression between the early G1-phase and the beginning of S-phase, and then up-regulated expression between the beginning of S-phase and the G2/M-phase. These results suggest that the naive pluripotency network is destabilized transiently during the transition from the G1-phase to the S-phase of the cell cycle
2

Esrrb is a prominent target of Nanog that substitutes for Nanog function in ES cell self-renewal, reprogramming and germline development

Festuccia, Nicola January 2013 (has links)
Embryonic stem (ES) cell pluripotency is sustained by a network of transcription factors centred on Oct4, Sox2 and Nanog. Whilst Oct4 and Sox2 expression is relatively uniform, ES cells fluctuate between states of high Nanog expression possessing high self-renewal efficiency, and low Nanog expression exhibiting increased differentiation propensity. Moreover, modulation in the level of Nanog expression determines the efficiency of ES cell self-renewal. To identify genes regulated by Nanog, genome-wide transcriptional profiling was performed on ES cells expressing different Nanog levels and Nanog-null ES cells expressing a Nanog-ERT2 fusion protein in which nuclear Nanog activity can be regulated by tamoxifen. Surprisingly, only a minor fraction of the genes to which Nanog binds showed significant changes in response to Nanog induction. Prominent amongst Nanog-responsive genes is Estrogen-related receptor b (Esrrb). Nanog binds directly to Esrrb, enhances binding and pause-release of RNAPolII from the Esrrb promoter and stimulates Esrrb transcription. Consistent with these findings, elevation of Nanog produces a cell population that expresses uniformly high Esrrb levels. Moreover, double fluorescent reporter lines show that Esrrb and Nanog levels are strongly correlated in individual cells. Loss of Nanog is required for downregulation of Esrrb, which coincides with commitment to differentiate. Esrrb overexpression results in LIF independent self-renewal, and blocks neural differentiation, even in the absence of Nanog. Cell fusion experiments between ES and neural stem (NS) cells show that elevated Esrrb levels allow the reprogramming of the NS cell genome in the absence of Nanog. Esrrb can rescue stalled reprogramming during the derivation of Nanog-/- induced pluripotent stem (iPS) cells. Moreover, targeted knock-in of Esrrb at the Nanog locus rescues the ability of Nanog null ES cells to maintain germ cell development beyond E12. Finally, Esrrb deletion abolishes the defining ability of Nanog to confer LIF-independent selfrenewal to ES cells. Together these data identify Esrrb as a critical downstream mediator of Nanog function.

Page generated in 0.0288 seconds