• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 12
  • 10
  • 9
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved particle Swarm Optimisation algorithms / Des algorithmes améliorés de particules Swarm Optimisation

Sun, Yanxia 14 December 2011 (has links)
Optimisation Swarm Particle (PSO) est basé sur une métaphore de l'interaction sociale […] en ajustant les trajectoires des vecteurs individuels, appelés «particules» conceptualisées comme des points se déplaçant dans un espace multidimensionnel. Le poids aléatoire des paramètres de contrôle est utilisé pour provoquer les particules à aller stochastiquement vers une région ayant plus de succès dans un espace tridimensionnel. Les particules itératives ajustent leur vitesse et leur direction en fonction de leurs personnels et des meilleures positions dans l'essaim. PSO a été appliquée avec succès pour optimiser une large gamme de problèmes. Cependant, les algorithmes standard PSO sont facilement piégés dans les points locaux suboptimaux lorsqu'il est appliqué à des problèmes avec de nombreux extrema locaux ou avec des contraintes. Cette thèse présente plusieurs algorithmes / techniques pour améliorer la capacité de l'OPS recherche mondiale: 1) Deux nouveaux algorithmes chaotiques de particules essaim d'optimisation, d'avoir une chaotiques Hopfield Neural Network (HNN) la structure, sont proposées. L'utilisation d'un système chaotique pour déterminer les poids des particules aide des algorithmes OSP pour échapper à des extrema locaux et de trouver l'optimum global. 2) Pour les algorithmes existants OSP, la relation et l'influence compter que sur les composants correspondants dimensions de l'essaim de particules. Pour montrer la relation intérieure entre les différentes composantes d'une particule, les réseaux de neurones peuvent être utilisés pour modéliser les projections d'ordre du problème d'optimisation, et une optimisation des intérieurs entièrement connecté essaim de particules est proposé à cet effet. 3) En raison de la complexité des contraintes, une solution déterministe générale est souvent difficile à trouver. Par conséquent, une particule détendue contrainte optimisation par essaim algorithme est proposé. Cette méthode améliore la capacité de recherche de l'OSP. 4) Pour améliorer les performances de l'optimisation par essaim de particules, une méthode adaptative de particules essaim d'optimisation basée sur les tests d'hypothèses sont proposées. Cette méthode applique un test d'hypothèse pour déterminer si le piège des particules dans un minimum local ou non. 5) Afin de renforcer la capacité du MPSO de recherche globale, une approche adaptative multi-objectif l'optimisation par essaim de particules (MOPSO) est proposé. Les résultats de simulation et d'analyse confirment l'efficacité des algorithmes proposés / techniques par rapport à l'autre état d'algorithmes / Particle Swarm Optimisation (PSO) is based on a metaphor of social interaction such as birds flocking or fish schooling to search a space by adjusting the trajectories of individual vectors, called “particles” conceptualized as moving points in a multidimensional space. The random weights of the control parameters are used to cause the particles to stochastically move towards a successful region in a higher dimensional space. Particles iteratively adjust their speed and direction based on their personal best positions and the best position in the swarm. PSO has been successfully applied to optimise a wide range of problems. However, the standard PSO algorithms are easily trapped in local suboptimal points when applied to problems with many local extrema or with constraints. This thesis presents several algorithms/techniques to improve the PSO's global search ability: 1) Two new chaotic particle swarm optimisation algorithms, having a chaotic Hopfield Neural Network (HNN) structure, are proposed. Using a chaotic system to determine particle weights helps the PSO algoritms to escape from local extrema and to find the global optimum. 2) For the existing PSO algorithms, the relationship and influence only rely on the corresponding dimensional components of the particle swarm. To show the inner relationship among the different components of one particle, neural networks can be used to model the characteristcs of the optimisation problem, and an inner fully connected particle swarm optimisation is proposed for this purpose. 3) Due to the complexity of constraints, a general deterministic solution is often hard to find. Therefore, a relaxed constraint particle swarm optimisation algorithm is proposed. This method improves the PSO's search ability. 4) To improve the performance of particle swarm optimisation, an adaptive particle swarm optimisation method based on hypothesis testing is proposed. This method applies a hypothesis test to determine whether the particles trap into a local minimum or not. 5) To enhance the MPSO's global search ability, an adaptive multi-objective particle swarm optimisation (MOPSO) is proposed. Simulation and analytical results confirm the efficiency of the proposed algorithms/techniques when compared to the other state of the art algorithms
2

Conception optimale des moteurs à réluctance variable à commutation électronique pour la traction des véhicules électriques légers

Ilea, Dan 25 October 2011 (has links) (PDF)
Le domaine de la traction électrique a suscité un très grand intérêt dans les dernières années. La conception optimale de l'ensemble moteur électrique de traction - onduleur doit prendre en compte une variété de critères et contraintes. Étant donnée la liaison entre la géométrie du moteur et la stratégie de commande de l'onduleur, l'optimisation de l'ensemble de traction doit prendre en considération, en même temps, les deux composants.L'objectif de la thèse est la conception d'un outil d'optimisation appliqué à un système de traction électrique légère qu'emploie un moteur à réluctance variable alimenté (MRVCE) par un onduleur triphasé en pont complet. Le MRVCE est modélisé en utilisant la technique par réseau de perméances. En même temps, la technique de commande électronique peut être facilement intégrée dans le modèle pour effectuer l'analyse dynamique du fonctionnement du moteur. L'outil d'optimisation réalisé utilise l'algorithme par essaim de particules, modifié pour résoudre des problèmes multi-objectif. Les objectifs sont liés à la qualité des caractéristiques de fonctionnement du moteur, en temps que les variables d'optimisation concernent la géométrie du moteur aussi que la technique de commande. Les performances de l'algorithme sont comparées avec ceux de l'algorithme génétique (NSGA-II) et d'une implémentation classique de l'algorithme par essaim de particules multi-objectif.Finalement, un prototype de moteur à réluctance variable est construit et le fonctionnement du MRVCE alimenté depuis l'onduleur triphasé en pont complet est implémenté et les outils de modélisation et d'optimisation sont validés
3

Contribution aux méthodes hybrides d'optimisation heuristique : Distribution et application à l'interopérabilité des systèmes d'information

El Hami, Norelislam 23 June 2012 (has links) (PDF)
Les travaux présentés dans ce mémoire proposent une nouvelle méthode d'optimisation globale dénommée MPSO-SA. Cette méthode hybride est le résultat d'un couplage d'une variante d'algorithme par Essaim de particules nommé MPSO (Particle Swarm Optimization) avec la méthode du recuit simulé nommé SA (Simulted Annealing). Les méthodes stochastiques ont connu une progression considérable pour la résolution de problèmes d'optimisation. Parmi ces méthodes, il y a la méthode Essaim de particules (PSO° qui est développée par [Eberhart et Kennedy (1995)]. Quant à la méthode recuit simulé (SA), elle provient du processus physique qui consiste à ordonner les atomes d'un cristal afin de former une structure cristalline parfaite. Pour illustrer les performances de la méthode MPSO-SA proposée, une comparaison avec MPSO et SA est effectuée sur des fonctions tests connues dans la littérature. La métode MPSO-SA est utilisée pour la résolution des problèmes réels interopérabilité des systèmes d'information, ainsi qu'aux problèmes d'optimisation et de fiabilité des structures mécaniques.
4

Contribution aux méthodes hybrides d'optimisation heuristique : Distribution et application à l'interopérabilité des systèmes d'information / Contribution to hybrid heuristic optimization methods : Distribution and application on information systems interoperability

El Hami, Norelislam 23 June 2012 (has links)
Les travaux présentés dans ce mémoire proposent une nouvelle méthode d'optimisation globale dénommée MPSO-SA. Cette méthode hybride est le résultat d'un couplage d'une variante d'algorithme par Essaim de particules nommé MPSO (Particle Swarm Optimization) avec la méthode du recuit simulé nommé SA (Simulted Annealing). Les méthodes stochastiques ont connu une progression considérable pour la résolution de problèmes d'optimisation. Parmi ces méthodes, il y a la méthode Essaim de particules (PSO° qui est développée par [Eberhart et Kennedy (1995)]. Quant à la méthode recuit simulé (SA), elle provient du processus physique qui consiste à ordonner les atomes d'un cristal afin de former une structure cristalline parfaite. Pour illustrer les performances de la méthode MPSO-SA proposée, une comparaison avec MPSO et SA est effectuée sur des fonctions tests connues dans la littérature. La métode MPSO-SA est utilisée pour la résolution des problèmes réels interopérabilité des systèmes d'information, ainsi qu'aux problèmes d'optimisation et de fiabilité des structures mécaniques. / The work presented in this PhD thesis contibutes to a new method for a modified particle swarm optimization algorith (MPSO) combined with a simulating annealing algorithm (SA). MPSO is known as an efficient approach with a high performance of solving optimization problems in many research fields. It is a population intelligence algorithm [Eberhart et Kennedy (1995)] inspired by social behavior simulations of bird flocking. Considerable research work on classical method PSO (Particle Swarm Optimization) has been done to improve the performance of this method. Therefore, the propose hybrid optimization algorithms MPSOSA use the combination of MPSO and simulating annealing SA. This method has the avantage to provide best results comparing with all heuristics methods PSO and SA. In this matter, a benchmark of eighteen well-known functions is given. These functions present different situations of finding the global minimum with gradual difficulties. Numerical results presented, in this paper, show the robustness of the MPSOSA algorithm. Numerical comparisons with three algorithms namely, Simulating Annealing, Modified Particle swarm optimization and MPSO-SA show that hybrid algorithm offers better results. This method (MPSO-SA) treats a wide range of optimization problems, in information systems interoperability and in structural optimization field.
5

Méthodes hiérarchiques pour l'optimisation géométrique de structures rayonnantes

Chaigne, Benoît 27 October 2009 (has links) (PDF)
Une antenne à réflecteur est un dispositif largement utilisé pour la communication satellite. La durée de vie d'un tel dispositif est étroitement liée à la fatigue due à la consommation d'énergie pour émettre le signal. Un des enjeux de la conception optimale d'une antenne revient donc à produire des systèmes dont le rendement est le meilleur possible par rapport à une tâche donnée. La particularité d'une antenne à réflecteur se traduit par la présence de surfaces rayonnantes dont la géométrie constitue le paramètre principal pour assumer cette tâche. Sur la base de la simulation de la propagation d'une onde électromagnétique en espace libre et en régime harmonique, on est capable de développer des méthodes d'optimisation numérique de la forme de surfaces rayonnantes. On cherche à minimiser un critère qui traduit en terme mathématique la tâche à effectuer d'un point de vue énergétique. Cependant, les méthodes utilisées sont souvent soumis à des difficultés liées au fait que ces problèmes sont mal posés et numériquement raides. Le contrôle étant géométrique, on a examiné dans cette thèse les contributions potentielles de représentations hiérarchiques afin d'étendre les performances d'algorithmes classiques d'optimisation. Ces extensions empruntent ses fondements aux méthodes multigrilles pour la résolution d'EDP. Un exemple théorique d'optimisation de forme permet d'assoir les stratégies appliquées à l'optimisation d'antennes. Puis des expériences numériques d'optimisation montrent que les algorithmes de bases sont améliorés en terme de robustesse comme en terme de vitesse de convergence.
6

Conception optimale des moteurs à réluctance variable à commutation électronique pour la traction des véhicules électriques légers / Optimal design of switched reluctance motors for light electric traction applications

Ilea, Dan 25 October 2011 (has links)
Le domaine de la traction électrique a suscité un très grand intérêt dans les dernières années. La conception optimale de l'ensemble moteur électrique de traction – onduleur doit prendre en compte une variété de critères et contraintes. Étant donnée la liaison entre la géométrie du moteur et la stratégie de commande de l'onduleur, l'optimisation de l'ensemble de traction doit prendre en considération, en même temps, les deux composants.L'objectif de la thèse est la conception d'un outil d'optimisation appliqué à un système de traction électrique légère qu'emploie un moteur à réluctance variable alimenté (MRVCE) par un onduleur triphasé en pont complet. Le MRVCE est modélisé en utilisant la technique par réseau de perméances. En même temps, la technique de commande électronique peut être facilement intégrée dans le modèle pour effectuer l'analyse dynamique du fonctionnement du moteur. L'outil d'optimisation réalisé utilise l'algorithme par essaim de particules, modifié pour résoudre des problèmes multi-objectif. Les objectifs sont liés à la qualité des caractéristiques de fonctionnement du moteur, en temps que les variables d'optimisation concernent la géométrie du moteur aussi que la technique de commande. Les performances de l'algorithme sont comparées avec ceux de l'algorithme génétique (NSGA-II) et d'une implémentation classique de l'algorithme par essaim de particules multi-objectif.Finalement, un prototype de moteur à réluctance variable est construit et le fonctionnement du MRVCE alimenté depuis l'onduleur triphasé en pont complet est implémenté et les outils de modélisation et d'optimisation sont validés / The interest for the electric traction applications has been growing in the last few years. The optimal design of the electric motor and of the inverter that powers it needs to consider a long list of restrictions and criteria. Because of the fact that the geometry of the motor and the switching strategy are closely linked, the optimization of the traction solution needs to consider both, at the same time.The objective of this thesis is the development of an optimization tool applied for the optimization of an electric traction solution that uses the switched reluctance motor (SRM) fed from a three phase full bridge inverter. The SRM is modeled using Permeance Network Analysis (PNA). The switching technique can be easily integrated in the model, which gives the possibility to run a dynamic analysis. The optimization tool created uses the Particle Swarm Optimization (PSO) algorithm, modified for multi-objective problems. The algorithms performances are compared with those of the Genetic Algorithm, using the NSGA-II multi-objective technique and with a classic version of multiple objective particle swarm optimizer (MOPSO).Finally, a SRM prototype is constructed and the drive solution using a full-bridge three phase inverter is implemented. The modeling and optimization tools are thus experimentally validated
7

Power consumption optimization based on controlled demand for smart home structure / Optimisation de la consommation d'électricité basée sur la demande contrôlée pour la structure de la maison intelligente

Amer, Motaz 27 November 2015 (has links)
Cette thèse propose un concept d'optimisation de la consommation d'énergie dans les maisons intelligentes basées sur la gestion de la demande qui repose sur l'utilisation de système d e gestion de l'énergie à la maison (HEMS) qui est en mesure de contrôler les appareils ménagers. L'avantage de ce concept est l'optimisation de la consommation d'énergie sans réduire les utilisateurs vivant confort. Un mécanisme adaptatif pour une croissance intelligente système de gestion de l'énergie de la maison qui a composé des algorithmes qui régissent l'utilisation des différents types de charges par ordre de priorité pré-sélectionné dans la maison intelligente est proposé. En outre, une méthode pourl'optimisation de la puissance générée à partir d'un hybride de systèmes d'énergie renouvelables (HRES) afin d'obtenir la demande de charge. particules technique d'optimisation essaim (PSO) est utilisé comme l'optimisation algorithme de recherche en raison de ses avantages par rapport à d'autres techniques pour réduire le coût moyen actualisé de l'énergie (LCE) avec une plage acceptable de la production en tenant compte des pertes entre la production et la demande. Le problème est défini et la fonction objective est introduite en tenant compte des valeurs de remise en forme de sensibilité dans le processus d’essaim de particules. La structure de l'algorithme a été construite en utilisant un logiciel MATLAB et Arduino 1.0.5 du logiciel.Ce travail atteint le but de réduire la charge de l'électricité et la coupure du rapport pic-moyenne (PAR). / This thesis proposes a concept of power consumption optimization in smart homes based on demand side management that reposes on using Home Energy Management System (HEMS) that is able to control home appliances. The advantage of the concept is optimizing power consumption without reducing the users living comfort. An adaptive mechanism for smart home energy management system which composed of algorithms that govern the use of different types of loads in order of pre-selected priority in smart home is proposed. In addition a method for the optimization of the power generated from a Hybrid Renewable Energy Systems (HRES) in order to achieve the load demand. Particle Swarm Optimization Technique (PSO) is used as optimization searching algorithm due to its advantages over other techniques for reducing the Levelized Cost of Energy (LCE) with an acceptable range of the production taking into consideration the losses between production and demand sides. The problem is defined and the objective function is introduced taking into consideration fitness values sensitivity in particle swarm process. The algorithm structure was built using MATLAB software and Arduino 1.0.5 Software. This work achieves the purpose of reducing electricity expense and clipping the Peak-toAverage Ratio (PAR). The experimental setup for the smart meter implementing HEMS is built relying on the Arduino Mega 2560 board as a main controller and a web application of URL http://www.smarthome-em.com to interface with the proposed smart meter using the Arduino WIFI Shield.
8

Transmission planétaire magnétique : étude, optimisation et réalisation / Magnetic planetary transmission : study, optimisation and realisation

Gouda, Eid Abdelbaki Ahmed 20 June 2011 (has links)
Le travail présenté dans ce mémoire porte sur l'étude, l'optimisation et la réalisation d'une transmission planétaire magnétique. Dans notre thèse nous essayons de répondre à quelques questions intéressantes sur la possibilité de remplacer un train planétaire mécanique par un train planétaire magnétique, est-ce que la formule de Willis reste valable pour le train planétaire magnétique et est-ce que les trains magnétiques ont des performances similaires à celles des trains mécaniques ? Donc nous étudions, le remplacement du train mécanique par une transmission magnétique. Nous montrons que le train magnétique a un volume moindre, des pertes inférieures et plusieurs autres avantages. Notre but dans cette thèse est d'obtenir un "design" optimal d'un train magnétique. Nous utilisons un logiciel de calcul par éléments finis pour l'étude électromagnétique et nous cherchons également à optimiser les dimensions de ce train. Pour cela nous utilisons la méthode d'optimisation par essaim de particules (OEP). Un prototype a été réalisé ce qui permet de confronter les résultats de simulation et expérimentaux. / The work presented in this thesis deals with the study, the optimisation and the realisation of a magnetic planetary transmission. We try to answer some questions about the possibility of replacing the mechanical planetary gear used in industrial machines by a magnetic planetary gear; is the formula of Willis still valid for the magnetic planetary gear and are the magnetic planetary gear performances at least similar to ones of the mechanical gears? We study the replacement of the mechanical planetary gear by a magnetic one. We show that the magnetic one has a smaller volume, lower losses and many other benefits. The objective of this work is to obtain an optimum design of a magnetic planetary gear. We use a finite element software to study the magnetic behaviour of the device and we also perform the optimization of the dimensions of the magnetic planetary gear. The particle swarm optimization method (PSO) has been used. A prototype has been built so the computation results has been compared to the experimental ones.
9

Modélisation multi-physique par modèles à constantes localisées ; application à une machine synchrone à aimants permanents en vue de son dimensionnement.

Bracikowski, Nicolas 04 December 2012 (has links) (PDF)
Afin de définir une conception optimale d'un système électromécanique, celui-ci doit intégrer des contraintes toujours plus drastiques et de nombreux phénomènes physiques issus de : l'électromagnétique, l'aérothermique, l'électronique, la mécanique et l'acoustique. L'originalité de cette thèse est de proposer une modélisation multi-physique pour la conception reposant sur des modèles à constantes localisées : solution intermédiaire entre la modélisation analytique et numérique. Ces différents modèles permettront l'étude et la conception sous contraintes d'une machine synchrone à aimants permanents dédiée pour la traction ferroviaire. Les résultats de simulations seront comparés à des résultats éléments finis mais aussi à des essais expérimentaux. Ce modèle multi-physique est entièrement paramétré afin d'être associé à des outils d'optimisation. On utilisera ici une optimisation par essaim de particules pour chercher des compromis entre différents objectifs sous forme de Front de Pareto. Dans ce papier, nous ciblerons les objectifs suivants : le couple d'origine électromagnétique et le bruit d'origine électromagnétique. Finalement une étude de sensibilité valide la robustesse de la conception retenue quand celle-ci est soumise aux contraintes de fabrication. L'objectif étant de poser les bases d'un outil d'aide à la décision pour le choix d'une machine électrique
10

Contribution à la conception des filtres bidimensionnels non récursifs en utilisant les techniques de l’intelligence artificielle : application au traitement d’images / Contribution to the design of two-dimensional non-recursive filters using artificial intelligence techniques : application to image processing

Boudjelaba, Kamal 11 June 2014 (has links)
La conception des filtres a réponse impulsionnelle finie (RIF) peut être formulée comme un problème d'optimisation non linéaire réputé pour être difficile sa résolution par les approches conventionnelles. Afin d'optimiser la conception des filtres RIF, nous explorons plusieurs méthodes stochastiques capables de traiter de grands espaces. Nous proposons un nouvel algorithme génétique dans lequel certains concepts innovants sont introduits pour améliorer la convergence et rendre son utilisation plus facile pour les praticiens. Le point clé de notre approche découle de la capacité de l'algorithme génétique (AG) pour adapter les opérateurs génétiques au cours de la vie génétique tout en restant simple et facile à mettre en oeuvre. Ensuite, l’optimisation par essaim de particules (PSO) est proposée pour la conception de filtres RIF. Finalement, un algorithme génétique hybride (HGA) est proposé pour la conception de filtres numériques. L'algorithme est composé d'un processus génétique pur et d’une approche locale dédiée. Notre contribution vise à relever le défi actuel de démocratisation de l'utilisation des AG’s pour les problèmes d’optimisation. Les expériences réalisées avec différents types de filtres mettent en évidence la contribution récurrente de l'hybridation dans l'amélioration des performances et montrent également les avantages de notre proposition par rapport à d'autres approches classiques de conception de filtres et d’autres AG’s de référence dans ce domaine d'application. / The design of finite impulse response (FIR) filters can be formulated as a non-linear optimization problem reputed to be difficult for conventional approaches. In order to optimize the design of FIR filters, we explore several stochastic methodologies capable of handling large spaces. We propose a new genetic algorithm in which some innovative concepts are introduced to improve the convergence and make its use easier for practitioners. The key point of our approach stems from the capacity of the genetic algorithm (GA) to adapt the genetic operators during the genetic life while remaining simple and easy to implement. Then, the Particle Swarm Optimization (PSO) is proposed for FIR filter design. Finally, a hybrid genetic algorithm (HGA) is proposed for the design of digital filters. The algorithm is composed of a pure genetic process and a dedicated local approach. Our contribution seeks to address the current challenge of democratizing the use of GAs for real optimization problems. Experiments performed with various types of filters highlight the recurrent contribution of hybridization in improving performance. The experiments also reveal the advantages of our proposal compared to more conventional filter design approaches and some reference GAs in this field of application.

Page generated in 0.06 seconds